
 

 

 

Zend PlatformTM 

w w w . z e n d . c o m  

User Guide 

Zend Platform V3.0 for i5/OS 
 

By Zend Technologies, Inc. 

 

 

 



About Zend Platform for i5/OS 

ii 

Zend Platform User Guide Disclaimer 

The information in this document is subject to change without notice and does not represent a 

commitment on the part of Zend Technologies Ltd. No part of this manual may be reproduced or 

transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, 

or information storage and retrieval systems, for any purpose other than the purchaser’s personal 

use, without the written permission of Zend Technologies Ltd. 

 

All trademarks mentioned in this document, belong to their respective owners. 

 

© 1999-2007 Zend Technologies Ltd. All rights reserved. 

Zend Platform User Guide for i5/OS issued November 2007. 

 

DN: ZP-I5UG-191107-3.0-005 

Product Version: 3.0.3a for i5 



Zend Platform for i5/OS User Guide 

iii 

Preface 

Zend Platform is an extremely diverse, runtime-environment management platform. As such, a 

greater understanding of the underlining concepts is required to benefit from the Zend Platform 

capabilities and features. This User Guide reflects these concepts by providing a workflow driven 

description of Zend Platform’s features. 

 

Part One: Introduction to Zend Platform is an introduction describing the background and architectural 

design of Zend Platform along with who should read this guide and how to maximize the benefits of 

deploying Zend Platform in your environment. 

 

Part Two: Administration and Configuration, describes the initial tasks that should be done in order to 

customize Zend Platform to any given environment. 

 

Part Three: Performance Management Server, describes the features and functionality included with 

the “Performance Management Server”. This part includes functional descriptions of the performance 

management components, which include: Platform (Management Console), PHP Intelligence, 

Performance and Configuration. 

 

Part Four: Enterprise Server, describes the features and functionality included with the “Enterprise 

Server”. This part includes functional descriptions of Enterprise grade components, which include: Job 

Queues and SNMP Traps. 

 

Part Five: Integration Server, describes the features and functionality included with the “Integration 

Server”. This part includes functional descriptions of Integration components, which include: Zend 

Platform’s Java Bridge and advanced reporting facilitated by Actuate’s BIRT Reporting Tool. 

 

Part Six: Reference Information, provides additional reference information. This part includes an API 

and Directives list, Tutorials and Appendixes. 



About Zend Platform for i5/OS 

iv 

Audience 

Zend Platform is responsible for providing solutions to the challenges faced by different stakeholders 

in the organization; therefore, this guide is suited for Managers, System Administrators and 

Developers. 

 

Managers will learn how to utilize this solution to support PHP lifecycle management by streamlining 

the PHP application lifecycle across development and production.  

This kind of development method is responsible for shortening release cycles by integrating the 

working environment.  

 

Managers can benefit from knowing how to utilize Zend Platform with their testing staff to obtain a 

means for detecting and pinpointing run-time problems throughout the production lifecycle while 

having the safety of knowing that when run-time problems are located, testing staff will have a 

complete audit trail to help resolve the issue.  

 

From a usability aspect, delivering a product on time is only part of the equation.  Find out how to 

improve user experience and increase performance, up-time and customer satisfaction through using 

Zend Platform.  

From the PHP aspect, know why Zend Platform considerably improves PHP execution while 

maintaining and synchronizing PHP configurations. 

 

From an organizational standpoint, find out how to leverage existing investments in Java applications 

as well as reducing costs on hardware. 

 

System Administrators will be able to understand how to detect problems with PHP Intelligence to 

pinpoint run-time problems with detailed information. Learn how to control configuration by 

synchronizing configuration of '.ini' files accurately across PHP servers and improve performance by 

getting more out of each PHP server (less servers doing the same job).  

 

Developers can learn how to integrate with Zend Studio to improve quality by quickly identifying 

problems and reducing the testing cycle. They can also benefit from the PHP/Java Integration Bridge 

to reuse code by utilizing existing code. 



Zend Platform for i5/OS User Guide 

v 

Table of Contents 

Part I: Introduction to Zend Platform ...................................................................................8 
About Zend Platform for i5/OS...........................................................................................9 

Navigation......................................................................................................................... 9 
Central Control Center ........................................................................................................ 9 
Standard and Enterprise Servers ........................................................................................ 10 

Zend Platform Overview................................................................................................... 11 
Environments .................................................................................................................. 11 
Architecture..................................................................................................................... 13 

Part II: Administration and Configuration...........................................................................18 
Cluster Management ........................................................................................................ 19 

Server Management ......................................................................................................... 20 
Group Management .......................................................................................................... 21 
VHost Management .......................................................................................................... 21 
Restricting Access to Virtual Hosts ...................................................................................... 21 

PHP Intelligence .............................................................................................................. 22 
Configuring Event Triggers ................................................................................................ 22 
Why Configure Event Triggers? .......................................................................................... 23 
Filtering Event Triggers ..................................................................................................... 23 
Defining Event Triggers ..................................................................................................... 24 
Choosing and Defining Event Triggers ................................................................................. 25 
Define Event Actions......................................................................................................... 33 

Performance.....................................................................................................................37 
Configuring Performance ................................................................................................... 37 
File Compression .............................................................................................................. 49 
Blacklists......................................................................................................................... 50 
Configuring the Zend Download Server (ZDS)...................................................................... 51 

Configuration Tab............................................................................................................. 56 
Tunneling (Communication Settings) .................................................................................. 56 
Studio Settings ................................................................................................................ 61 
PHP Configuration............................................................................................................. 63 

Users and Groups ............................................................................................................. 66 
User Management ............................................................................................................ 66 
Adding and Editing Users................................................................................................... 67 
Adding and Editing Groups ................................................................................................ 68 
Passwords ....................................................................................................................... 70 

Licenses ...........................................................................................................................71 
License Management ........................................................................................................ 71 

Part III: Performance Management Server .........................................................................74 
The Problem Resolution Lifecycle..................................................................................... 75 

The Problem Resolution Lifecycle........................................................................................ 75 
Implementing the Problem Resolution Lifecycle .................................................................... 76 
Creating Events................................................................................................................ 77 



About Zend Platform for i5/OS 

vi 

Finding Events that Interest You......................................................................................... 78 
PHP Intelligence .............................................................................................................. 79 

System Health ................................................................................................................. 79 
Event List ........................................................................................................................ 81 
Event Details ................................................................................................................... 84 
Database Maintenance ...................................................................................................... 93 
Graphs............................................................................................................................ 94 

Performance.....................................................................................................................96 
Overview......................................................................................................................... 96 
Performance Lifecycle ....................................................................................................... 98 
Implementing the Performance Lifecycle ............................................................................100 
Event Trigger Settings and Analysis ...................................................................................104 
Performance Optimization Tools ........................................................................................106 
Tuning ...........................................................................................................................111 
Accelerator Performance Level Descriptions ........................................................................112 
Tuning Zend Platform for Optimal performance on i5 OS ......................................................113 

Web Services.................................................................................................................. 114 
Introduction....................................................................................................................114 
System Requirements for Web Services .............................................................................114 
General Tasks .................................................................................................................115 
Get/Set Actions...............................................................................................................116 
Add/Remove Servers Actions ............................................................................................117 
Event Handling................................................................................................................118 

Part IV: Enterprise Server.................................................................................................120 
Job Queues .................................................................................................................... 121 

Introduction....................................................................................................................121 
Job Queues.....................................................................................................................122 
Job Queue Tab (Job Management).....................................................................................124 
Queues ..........................................................................................................................124 
Jobs...............................................................................................................................127 
Job Queue Settings..........................................................................................................132 
Creating Jobs..................................................................................................................134 

Zend Download Server (ZDS) ......................................................................................... 135 
Configuring the Zend Download Server (ZDS).....................................................................135 

Part V: Integration Server.................................................................................................143 
Java Bridge .................................................................................................................... 144 

About Zend’s Java Bridge Technology ................................................................................144 
Java Status Page.............................................................................................................147 
Common Tasks ...............................................................................................................150 
Usability Issues ...............................................................................................................155 

BIRT Reports.................................................................................................................. 158 
About BIRT Reports .........................................................................................................158 
The BIRT Reports Tab ......................................................................................................158 
Setting-Up the BIRT Report Engine....................................................................................159 
Zend Platform BIRT Report Examples.................................................................................159 



Zend Platform for i5/OS User Guide 

vii 

Part VI: Reference Information.........................................................................................165 
Zend Platform APIs and Directives................................................................................. 165 

APIs and Directives..........................................................................................................177 
Zend Platform Built-In Services and Extensions............................................................. 185 

About.............................................................................................................................185 
Setup Tool......................................................................................................................185 
Services .........................................................................................................................186 
Extensions......................................................................................................................190 

Tutorials.........................................................................................................................192 
Integrating Existing and Legacy Applications.......................................................................192 
Calling an EJB on Websphere from PHP ..............................................................................195 
Partial and Preemptive Page Caching .................................................................................197 

Appendixes .................................................................................................................... 204 
Appendix A – Troubleshooting Zend Platform ......................................................................204 
Appendix B – Configuration Check List ...............................................................................206 
Appendix C – Performance Lifecycle Check List ...................................................................206 
Appendix D - Event Aggregation Mechanism .......................................................................207 
Appendix E – Zend Platform Support .................................................................................209 
Appendix F – zend.ini Configuration Settings ......................................................................211 
Appendix G - Network Port Requirements ...........................................................................213 
Appendix H - About SNMP ................................................................................................215 

Index .............................................................................................................................221 



Zend Platform for i5/OS User Guide 

8 

PART I: INTRODUCTION TO ZEND PLATFORM 
IN THIS CHAPTER... 

NAVIGATION 

CENTRAL CONTROL CENTER 

STANDARD AND ENTERPRISE SERVERS 

OVERVIEW 

ENVIRONMENTS  

ARCHITECTURE  

CENTRAL SERVER  

NODES  

CENTRAL-NODE COMMUNICATION  

PLATFORM ADMINISTRATION A SINGLE POINT OF ACCESS  

Zend Platform is a complete runtime environment for managing and maintaining mission critical and 

enterprise PHP applications from a single, centralized location.  

This environment consists of cluster management; performance management, monitoring, detection 

and recovery; and Java integration.  

Zend Platform improves both the end user experience and IT productivity by combining cluster and 

performance management; automated monitoring and detection capabilities; and powerful Java 

Integration capabilities into one integrated environment. 

Zend Platform provides the PHP-enabled enterprise with the ability to: 

 Manage every aspect of PHP from a single, Web-based interface  

 Quickly drill-down to critical issues to resolve and optimize  

 Create user defined thresholds and error values  

 Configure servers from a remote management station and to perform controls at a click of a 

button  

 Monitor performance improvement with Code Acceleration, Content Caching and File 

Compression 

 The Zend Download Server 

 Integrate with Java system elements over Platform’s fully implemented PHP/Java Bridge. 



About Zend Platform for i5/OS 

9 

About Zend Platform for i5/OS 

Zend Platform is the only robust PHP production environment that ensures your applications run 

smoothly at all times.  

Designed for IT personnel and businesses that require industrial-strength applications in highly 

reliable production environments, Zend Platform offers high performance and scalability to provide 

your customers with the best possible Web experience and response time.  

Zend Platform uniquely guarantees application up time and reliability through enhanced PHP 

monitoring and immediate problem resolution that removes the troubleshooting guesswork out of the 

equation and replaces it with peace-of-mind.  

You spent time and money developing your state-of-the-art PHP application, now it is time to ensure 

its up and running.  

Navigation 

Zend Platform is a browser-based application. The general layout of functionality is in a tabbed view 

where each tab represents a unique functionality. 

 Platform - Management functionality 

 PHP Intelligence - Monitoring and event generation capabilities 

 Performance - Performance enhancement tools 

 Job Queues - Streamline offline processing 

 Integration - Incorporate a Java environment to enrich your applications  

The tab colors indicate the server type that is determined by the license type you have. The pale blue 

tabs belong to the Performance Management Server and the darker blue tabs belong to the Enterprise 

and Integration servers.  

Central Control Center 

Zend Platform handles clusters and standalone servers. As such, users can navigate freely between 

the central server and nodes. 

Users stay on the central server until they select a tab that prompts to select a server; as soon as a 

server is selected, subsequent actions and settings will be applied to the selected server only. 

A status bar showing the date, time and login name will also display the name of the server on which 

the user is currently working. 

When no server name appears, you are on the central server. 



Zend Platform for i5/OS User Guide  

10 

Standard and Enterprise Servers 

Zend Platform is distributed as either a Performance Management Server or an Enterprise Server. 

Choosing the appropriate server depends on your organization's requirements. 

The following table lists the different servers and their respective functionality: 

Feature Performance 

Management  

Enterprise Comments 

Platform 
  

This includes the Dashboard, Server Status 

indicator, User and license Management. 

PHP Intelligence 
  

This includes the System Health overview, 

Event management and the Graph generator. 

Performance 

  

This includes performance management 

features: Code Acceleration, Dynamic Content 

Caching, File Compression, Updating Virtual 

Hosts and testing URLs. 

Configuration 

  

This includes the advanced configuration 

features for configuring your PHP directly from 

Platform Administration and enabling the 

connectivity with Zend Studio to provide a 

complete development lifecycle. 

Job Queues 
  

Improve response time during interactive web 

sessions and utilizing unused resources. 

Integration 

  

This includes Java Bridge connectivity and 

integration with business intelligence reporting 

using Actuate's BIRT reporting system. 

 



Zend Platform Overview 

11 

Zend Platform Overview 

Zend Platform is a central management solution and run-time environment for: 

 Configuration Management - Platform’s architecture provides full control of the PHP 

application platform, including performance management settings, event thresholds, etc. 

allowing administrators to set up groups of multiple identical servers via: 

• Remote server configuration.  

• Clone configurations or parts of configurations from one server to another or from 

one server to an entire group of servers. 

 Performance Management * - Platform is equipped with three management modules for 

tracking and improving speed and responsiveness of Web applications. These include Code 

Acceleration, Dynamic Content Caching and File Compression. 

 PHP Intelligence - Platform features new technology that detects and recovers crashes, 

whether they occur in PHP itself, the database software, or your own application. The 

integrated suite of monitoring, detection and recovery features allows users to drill down to 

critical issues and optimizations quickly and easily. 

 Job Queues - Zend Platform’s Job-Queue provides PHP production environments with a 

standard approach to streamline offline processing. A Job-Queue server is services the Job 

Queue that provides the ability to reroute and delay the execution of processes that are not 

essential during user interaction with the Web Server. 

 PHP/Java Integration - The Platform PHP/Java Bridge module provides PHP centric companies 

with a well-rounded environment making sure that the organization benefits from the “best 

of both worlds”. Be it, existing investments in J2EE application servers that require this 

solution, or to provide a means for organizations - if they choose, to bridge language 

limitations by use of Java applications. The Java Bridge is not limited to interactions strictly 

with J2EE and legacy systems, the Platform PHP/Java Bridge also provides the ability to 

interact with plain Java objects. 

Environments 

A typical environment for running any Web application consists of three basic components: Web 

servers for running the Web application, a load-balancer to handle traffic and a Firewall to protect 

form unauthorized entry into the hosting network.  

Zend Platform, once introduced to this kind of an environment becomes a control environment for web 

server activity.  

In an environment where a single web server manages activity, Zend Platform resides on the web 

server to provide system health and analysis information.  

Moreover, environments that include several web servers, as clusters servicing a single Web 

application or a collection of clusters servicing different Web applications, Zend Platform serves as a 

single control center for system health information, cluster management and runtime process 

optimization.  

The Zend Platform system diagram below, demonstrates where Zend Platform components typically 

reside in the PHP- enabled enterprise. 



Zend Platform for i5/OS User Guide  

12 

 

Figure 1 - Zend Platform System Diagram 

The system diagram illustrates the following points: 

 Zend Platform’s Standalone Cluster Server is installed on a Web server.  

 The System Administrator controls all Platform Central functions. Providing the ability to work 

with Platform from a single workstation using a standard Web Browser. 

 Nodes host resident PHP-based services that fill requests from the Web. 

 Load Balancing directs requests to available servers in the web farm.  

Note:  

Platform Server and the Platform nodes are separate entities; therefore, it is important to configure 

Firewall and security devices to allow communication between the nodes and the Platform Server. 

Identify which ports are in use and if necessary, open these ports on your Firewall.To read more about 

working with Firewalls and Nat go to “Configuring Zend Studio Tunneling settings”. 



Zend Platform Overview 

13 

Architecture 

Zend Platform is a complete environment that provides rich functionality by interacting with the 

existing PHP in a simple and generic way. Zend Platform is a non-intrusive extension to an existing 

environment with minimal overhead that helps obtain enhanced performance and reliability.  

Zend Platform extends the Zend Engine with the organization's execution environment, providing the 

platform on which to base Web services, business to commerce applications, content-management, 

Intranet and business-to-business applications. 

 

Figure 2 - Zend Platform and the PHP-enabled Enterprise 

Zend Platform consists of two deployed components the Central Server (consists of a Server + Node) 

and the Node component.  

Zend’s Central Server is a central management component for governing node configurations and 

script performance information. The Central Server can be deployed as a standalone Zend Platform 

environment for a single server and for this reason, contains fully functioning node components. 

However, the prominent application for Zend Platform is multiple server/cluster based environments.  

Zend Central provides a single point of access and control for multiple nodes.  

Nodes are web servers that run with Apache and service a PHP application. The Zend Platform 

components are installed on the node to report script, database and system activity to the Central 

Server. Each node installation also includes a debugger that is integrated with Zend Studio extended 

code management features such as profiling, debugging and correcting code directly on a node.   

In essence, similar components are installed on the Central Server and the Nodes since the Central 

Server also performs as a node. However, the Central Server and the Node Components employ 

different modules for their overall activity. 



Zend Platform for i5/OS User Guide  

14 

Central Server 
The Central Server provides the necessary functionality for handling event information, node 

management and performance monitoring. 

No matter how many nodes are registered in the cluster, from the users point of view Zend Central 

provides an efficient and useful single point of entrance. Zend Central resides on the Central Server 

and is in charge of displaying Platform Administration for Central Server and Node configuration. Zend 

Central is the main communication component for collecting, storing, configuring and receiving 

information from the nodes.  

Communication is carried out via regular TCP/IP communication and event information is stored in a 

dedicated database. Zend Central governs the PHP application performance and monitoring features 

including configurations for nodes, PHP and event collection.  

The following illustration is a representation of Zend Platform Server components: 

 

Figure 3 - Zend Platform Server Components 

The Central Server is a central management component for managing and configuring nodes. The 

Central server component is installed once. All subsequent installations are for node components that 

are registered to this server in the installation process. Standalone environments base on one server 

only require the central component that also includes all the node components necessary for working 

in a single server environment. 

The installation includes three main components: 

1. Zend Central that includes information collection and functionality: Zend Performance, PHP 

Intelligence and the Java Bridge. 

2. The Database is the main repository for event information collected from all registered nodes.  

3. One of the main components of Zend Central is the Collector. This component collects and 

aggregates information from nodes in the cluster that is displayed in the Zend Platform PHP 

Intelligence module. The collector collects and aggregates information according to 

configurations applied to a single server or to several servers (grouped servers).  



Zend Platform Overview 

15 

Nodes 
The Nodes are the web servers that run PHP. Nodes are the individual servers that service a Web 

application and a collection of nodes is a cluster.  

The central server governs clusters. 

The following components need to be on each Node: 

 Basic: 

• A supported operating system (Linux, Unix, Mac, i5/OS and Windows) 

• A Supported Web Server (Apache, IIS) 

 PHP: 

• PHP version 4 or 5 

 Zend Products 

• Zend Platform 

• Zend Download Server 

• Zend Java Bridge 

• Zend Optimizer 

• Zend Debugger 

Nodes have to be registered with the Central Server in order to enable communication between the 

Node and the Central Server. There are two ways to register a Node to the Central Server: through 

the installation process or by manually registering the Node. 

Zend Platform Nodes consist of several components that report information to the Central Server and 

provide debug capabilities for PHP scripts residing on a node. 

 A Collector Component for transferring event information to the central 

 Debug Infrastructure for debugging live pages directly from a node (This option is supported 

by Zend Studio) 

The following illustration is a representation of Zend Platform Node components: 

 

Figure 4 - Zend Platform Node Components 

The Collector component listens to the running processes and collects event information (For more on 

Events go to “Configuring Events”), to be reported to the Central Server over a regular TCP/IP 



Zend Platform for i5/OS User Guide  

16 

connection using SSL. However, only if the node has the appropriate certificate indicating that it is 

part of the cluster will the Central Server agree to receive event information from a node’s collector.  

The type of information the Collector listens to and collects is event information determined by Event 

Rules that are configured on the Central Server. Event information is sent to the Central server where 

it is aggregated according to event type (more about event aggregation can be found in Appendix D - 

“Event Aggregation Mechanism”).   

The Debugger Infrastructure is enabled via the Zend Studio/Zend Platform Communication Tunnel 

that is geared to work in development and production environments. With the appropriate 

configuration, the Debugger Infrastructure can work through Firewalls or NAT devices that may be 

positioned between the Node and Zend Studio (more about Firewall traversal can be found in 

“Configuring Communication with Zend Studio". The Debugger Infrastructure provides full lifecycle 

support for editing debugging, profiling and deploying code by enabling to view and edit Event source 

code in the Zend Studio development environment. This provides Zend Studio users with access the 

remote debugger via the same communication tunnel that routs full-duplex traffic over HTTP. The 

Debugger Infrastructure utilizes the Communication Tunnel, ensuring that multiple servers can be 

debugged through the same Communication Tunnel at once. 

 

Figure 5 - Communication with Zend Studio 



Zend Platform Overview 

17 

Central-Node Communication 

Traffic between the Central Server and Node clusters mostly occurs from the nodes to the central 

server with the nodes reporting event information through the collector component to Zend Central. 

However, Zend Platform has a Server Status feature that periodically checks the availability of each 

Node in the cluster and provides up to date information regarding the components installed on the 

nodes. 

The following diagram illustrates the communication between the Central Server and Nodes 

in a Cluster: 

 

Figure 6 - Central Node Communication 

Platform Administration, a Single Point of Access  

Zend Platform’s sophisticated architecture enables to use the Central Server as a single point of 

access for node availability and configuration, enabling to configure node settings and behavior from 

the Central Server itself. This connectivity is achieved by the addition of Platform Administration 

components on the Nodes as well as on the Central Server in the installation process. In this process 

the Central Server’s URL is specified to the Nodes as a central control unit and from that point 

onwards, access and read write permissions to nodes, can be established from the Central Server. 

 



Zend Platform for i5/OS User Guide 

18 

PART II: ADMINISTRATION AND CONFIGURATION 
The Zend Platform installation produces an out-of-the-box fully functioning version of Zend Platform. 

This installation includes basic default settings for monitoring events and code acceleration. At this 

stage Zend Platform already generates events and improves code generation. However, to benefit 

from Full-Power Cluster Management, Development integration with Zend Studio, Audit Trails, and 

much more, it is necessary to tune Zend Platform’s performance settings to suit your individual work 

environment.  

In this chapter, each configuration task is detailed by module in a chronological order beginning from 

the initial configuration tasks to configurations that may rely on other settings.  

The configuration actions addressed in this chapter are listed below: 

 Cluster Management - Add the servers that you want Zend Platform to control. Each server 

should be added and then grouped to create a cluster environment to be treated as a single 

entity in terms of event collection. 

 PHP Intelligence 

• Configure Event Triggers - customize the Event Triggers to suit your working environment. 

The Zend Platform installation comes ready with default configurations; however, it is 

recommended that a person with an understanding of the environments settings and 

performance standards, configure Event Triggers accordingly. 

• Configure Event Actions - once Event Triggers are configured the next logical step is to 

determine the actions and action rules that can be applied to Events generated according to 

Event Triggers. 

 Performance - Adjust performance requirements as a way to benefit from Zend Platform's 

advanced performance features.  

 Configuration   

• Configure Studio Server / Tunneling - Zend Platform’s tight integration with the Zend Studio 

IDE provides an efficient means for improving the development lifecycle. Environments that 

contain security precautions such as firewalls and NAT can set up Zend Platform to provide a 

secure means for obtaining integration with Zend Studio without compromising an 

organization's security measures.  

• Configuring PHP Settings - configure your PHP and Zend products directly from Zend 

Platform. 

• Users and Groups - Grant different levels of permissions to different users provides a means 

for controlling actions performed in the environment and for enforcing work procedures. This 

is the last step to customizing Zend Platform to your working environment.  

 License Management - Manage licenses for the central server and all nodes belonging to the 

cluster. 

 Password Administration - Manage and change System passwords. 



Cluster Management 

19 

Cluster Management 

IN THIS CHAPTER... 

SERVER MANAGEMENT 

GROUP MANAGEMENT 

VHOST MANAGEMENT 

RESTRICTING ACCESS TO VIRTUAL HOSTS 

Zend Platform manages clusters to make them available and manageable from a single location – the 

Central Server. Zend Platform treats clusters as a single unit for monitoring and management 

purposes. Moreover, through the Central Server each node in the cluster can be individually accessed. 

(The Central Server aggregates events originating from different servers; however, they include an 

identifier for each node on which the Event occurred). 

The installation process (and later on the Setup Tool) is used for adding servers to the cluster to 

become Nodes belonging to the Central Server. Once users add a server, the server's settings can be 

applied and modified using the Central Server. 

The following cluster setting options are available from: Platform | Cluster Management: 

 Manage Servers - Configure, delete and define servers. 

 Manage Groups - Group servers together for event reporting and configuration purposes. 

 Manage VHost (Virtual Hosts) - Manually delete and define Virtual Hosts 

 

 

Figure 7 - Manage Clusters Dialog 

i5/OS Note: 

This view displays the central server only, Cluster management is not relevant for this environment. 

Define Event Triggers once the servers have been configured and grouped. 



Zend Platform for i5/OS User Guide  

20 

Server Management 

To access this tab go to Platform | Cluster Management and select Manage Servers. 

The Manage Servers tab provides options for configuring and defining settings for servers added to 

Zend Platform using Zend Platforms Setup Tool. 

Only servers installed with the Zend Platform Setup Tool will appear in the Manage Server tab. 

To add a server to Zend Platform so that it appears in the Manage Clusters screen: 

1. Run the Setup Tool (Please see the Zend Platform Installation Guide for details on Node 

installation). 

2. Zend Platform automatically identifies registered servers and displays them in the Manage 

Servers tab.  

3. The installation script sets the Server Name and users can now define the new server's 

settings. 

Server settings are defined from Platform | Cluster Management | Manage Servers. 

The Server management settings are as follows: 

 Server Address - The actual hosts address (not editable). 

 Server Name - The server’s name for identification and all references to the server from Zend 

Platform. 

 Group - Designate a server to an existing group (new groups are added to the list from the 

Manage Groups tab). 

 GUI Directory - States the location of the server’s Platform Administration Installation.  

 SSL - Check the box if the server uses SSL. 

 Port - Specifies the port with which the specific server works. 

 Remove - Removes the server from the database (unregistered) and deletes all events 

related to the removed server. 

These settings should only be changed if changes that may affect these settings, occurred since the 

node installation. 

Removing a Server 

1. To remove servers go to: Platform | Cluster Management and selecting Manage Servers.  

2. Select a server from the list and click "Remove. 

3. Manage Servers will remove the server from Zend Platform and all functionality will be 

disconnected. 

Attempting to remove a server while another user is working on the server (through Zend platform), 

will activate a prompt message asking the user to select another server. Active Pop-up Blockers may 

interfere with this action causing a notification message to appear asking the user to actively select 

the "Select Server" option. This message will only appear once furthermore, deactivate all Pop-up 

Blockers when using Zend Platform or allow Pop-ups from the Zend Platform URL. 

 



Cluster Management 

21 

Group Management 

The Group Management tab provides options grouping servers together for event reporting and 

configuration purposes.  

Groups are created:  

 To aggregate Events across nodes (only if the nodes are running the same Web application). 

 To facilitate handling and managing groups of servers. 

Note: 

Groups should only be aggregated when the PHP application on all servers in the group is identical. 

To create a new group: 

1. Give the Group a name in the "Add a new group field" and press Add. 

A new group will be added to the list below. 

2. If you want to aggregate all events that occur on the servers associated with the specific 

group select the 'Aggregated' option. 

VHost Management 

The Manage VHosts tab provides a way to manually define Virtual Hosts. 

In general, virtual hosts are automatically added based on Event activity. However, Virtual Hosts only 

appear in the lists after an event is generated for a specific virtual host. 

To ensure that all Virtual Hosts can be visible, an additional option has been added to manually add 

Virtual Hosts. This option allows users to create the actual virtual host list for any given server. 

Virtual hosts can be added or deleted from this tab.  

Virtual hosts are added per server and deleted in one of two ways: 

1. Per virtual host name - do not select a specific server name before adding or deleting the 

virtual host. 

2. Per virtual host for a specific server - select a specific server name before adding or deleting 

the virtual host. 

When deleting a virtual host the database will permanently delete all events related to the deleted 

virtual host. 

 

Restricting Access to Virtual Hosts 

Defining Virtual Hosts provides a way to prevent certain users from gaining access to information 

regarding certain Virtual Hosts. Restricting access to a Virtual Host by user name is an additional level 

of authorization that is more precise than granting permissions per server. 

To restrict user permissions by virtual host: 

1. Go to Platform | User Management. 

2. Select the User (who should be denied permissions) and click "Edit". 

The Edit User Wizard opens (see Adding and Editing Users for complete instructions on the 

Edit User Wizard). 

3. In step two make sure the check box next to "No Server Restriction" is left unchecked. 

4. Select the check box next to the virtual hosts that should be granted access. 

This will grant access to the selected virtual hosts only 

5. Click "Finish" to close the Edit User Wizard and return to the User Management Screen. 



Zend Platform for i5/OS User Guide  

22 

PHP Intelligence 

IN THIS CHAPTER... 

CONFIGURING EVENT TRIGGERS 

WHY CONFIGURE EVENT TRIGGERS? 

FILTERING EVENT TRIGGERS 

DEFINING EVENT TRIGGERS 

CHOOSING AND DEFINING EVENT TRIGGERS 

CUSTOM EVENTS 

DEFINE EVENT ACTIONS 

Configuring Event Triggers 

Customize Event triggers to suit your working environment. Zend Platform comes ready with default 

configurations. However, a person with an understanding of the environment’s settings and 

performance standards should construct the Event Triggers to suit each unique environment. Event 

Triggers define the conditions under which events are captured by the monitoring system (PHP 

Intelligence).  

To Configure Event Triggers, go to PHP Intelligence | Event Triggers or use the Shortcut from Platform 

| Dashboard.  

Users are prompted to select a node before entering the Event configuration screen as all 

configurations are made to a selected node. The top bars of screens display the name of the node, no 

name means the user is working directly on the Central Server. 

For example, the image below displays the following text: Server name "zivperry". This means that 

the user is no longer working on the Central Server but working directly on the node (in our case a 

node aliased zivperry). 

 

Figure 8 - Configure Event Triggers (Partial List) 

The Event Triggers screen is used for defining and modifying Event Triggers to monitor events on a 

specific node. The table is used to define the conditions under which an event will be captured by the 

monitoring system.  



PHP Intelligence 

23 

The possible actions on this screen are: 

 Configure Event Triggers for a specific server. 

 View Event Triggers currently defined for the node.  

 Filter the view of events displayed in the “Define Event Triggers” table.  

To configure Event Triggers: 

1. Click “Event Triggers” in the “Configuration and Management Tools” list of shortcuts. The 

"Select Server to Configure" screen opens. 

2. Select a server from the “Server Tree.” 

3. Click "Select" to open the “Event Triggers” screen for the selected server. 

 

Figure 9 - Select Server to Configure 

Why Configure Event Triggers? 

Event Triggers are an essential tool for pinpointing bottlenecks in Web applications. Events not only 

indicate that one of the thresholds was breached they also collect information relevant to the 

occurrence to provide a full audit-trail for diagnostics. 

In terms of the outcome, these thresholds can be directly translated into performance issues the end 

user may encounter. Therefore, the more Events resolved the better the application will run. 

By using Event Triggers, scripts can be monitored to identify with precision the number of milliseconds 

or percentage it takes to execute a script. This identification is based on parameters that you can 

determine as acceptable performance thresholds. 

Filtering Event Triggers 

Zend Platform is equipped with 12 types of Events for monitoring performance and script execution. 

The default Event Trigger display is a non-filtered view that shows all the available Alerts. A filter is 

provided to allow displaying a selection of events by type. 

To filter events:  

1. Click "Filter By" to expand the filter list. 

2. Use the two drop-down fields to select the Events to display by: 

• Events from – The area where the event originated (script, database, web server, etc.) 

• Event Types – Filter view to display Events according to their Event Type (The selection 

changes according to the area chosen in the “Events From” field).  

3. Click "Go" to filter the view. 



Zend Platform for i5/OS User Guide  

24 

Defining Event Triggers  

The fields that make up the Define Event Triggers table are:  

 Event Type - The type of event that, under the rules defined, will produce an alert in the 

monitoring system. 

 Active - When enabled for a specific event, Zend Monitor (node) will report alerts when they 

occur (This gives the user the right to disable an event for a particular server).  

 Rules - Defines the conditions under which an event will produce a report. For example, 

(Red) Script Runtime Exceeds 500 Seconds means that the system will generate a critical 

(red) event—for Slow Script Execution (Absolute) type events, when meeting the condition 

(> 500 sec.).  

Note:  

The user defines the thresholds for both the moderate and severe events. Some events have only one 

level of severity (like "function error"). 

 To define whether Zend Monitor will report a specific event, enable/disable the event in the 

Active column of the Define Event Triggers table. 

 To save the changes to Event Trigger definitions, click Save Rules. 

The database will update with the changes. 

Each event type has its own advantages and characteristics. See the Chapter on Choosing and 

Defining Event triggers for more information about each Event type. 

Note: 

Events marked as “Performance Monitoring Events” have a special role in optimizing web application 

performance.  



PHP Intelligence 

25 

Choosing and Defining Event Triggers 

Each Event Type has its own advantages and characteristics. Listed below are the different Event 

Types, their descriptions and recommended usage. 

Note: 

Events marked as “Performance Monitoring Events” have a special role in optimizing web application 

performance. This topic is addressed in the Chapter on "Implementing the Performance Lifecycle". 

The following is a list of event types, click on the event name for more information about a specific 

event: 

 Slow Script Execution Absolute - Generates an event when executing a script exceeds defined 

limits. 

 Slow Script Execution Relative - Generates an event when script execution is lower or higher 

than the average script execution time.  

 PHP Error - PHP Errors are used to identify all types of PHP errors. This type of event is useful 

in QA processes to identify problems that may have slipped through the cracks during 

production. 

 Function Error - Generate a severe event when an error in one of the specified PHP Functions 

occurs 

 Slow Function Execution - Identify bottlenecks within functions.  

 Excess Memory Usage (Absolute and Relative) - Identify when scripts are using excess 

memory that can hinder the application's ability to perform. 

 Database Error - Report database-related function fails. 

 Slow Query Execution - Identify database performance slow queries that can directly 

influence Web server performance. 

 Inconsistent Output Size - Verify the page is rendering the same output to the client each 

time.  

 Load Average - Monitor the overall health of processes running on the server. 

 Custom Event - Generate an event whenever the API function monitor_custom_event() is 

called from a PHP script. 

Slow Script Execution Absolute 

This is a performance-monitoring event. 

Absolute Slow Script Execution is used to generate an event when executing a script exceeds defined 

limits. This function is used to maintain performance standards.  

Default parameters are 500 msec for moderate, 2000 msec for severe alerts. 

Additional Rules:  

 Suppress in case a "Slow Function Execution" event occurs. Selecting this option ignores 

"Slow Script Execution" events caused by a slow function. This is to prevent double reporting, 

as PHP Intelligence will report these events as "Slow Function Execution" events.  



Zend Platform for i5/OS User Guide  

26 

 Suppress in case the load average is above X - Selecting this option ignores events that occur 

when the average number of active processes waiting for CPU time is above x active 

processes (3 active processes is the default value). 

Note:  

These additional rules are applied to the Absolute and Relative Slow Script Execution event types. 

Slow Script Execution Relative 

This is a performance-monitoring event. 

Relative Slow Script Execution generates an event when script execution is lower or higher than the 

average script execution time. Parameters should be set to a certain percentage for moderate and 

severe alerts.  

The default values for this event type are set to 0. To generate events, configure these settings to a 

value that suits required script run-time. 

Additional Rules: 

 Suppress in case a "Slow Function Execution" event occurs. Selecting this option ignores 

"Slow Script Execution" events caused by a slow function. This is to prevent double reporting, 

as PHP Intelligence reports these events as "Slow Function Execution" events.  

 Suppress in case the load average is above x - Selecting this option ignores events that occur 

when the average number of active processes waiting for CPU time is above x active 

processes (3 active processes is the default value). 

Note:  

These additional rules are defined in the Absolute Slow Script execution cell. 

Relative Events:  

Event definitions are based on relative values i.e. percentage. Relative values are set according to 

warm-up settings, default value of 500 requests. If necessary, modify the default value by changing 

the zend_monitor.warmup_requests directive in the zend.ini. 

 

PHP Error 

PHP Errors identify all types of PHP errors such as: 

 Hard errors that cause stops in page execution.  

 Warnings that interrupt the end user experience.  

 Notices that could lead to larger problems. 

This type of event is useful in QA processes to identify problems that may have slipped through the 

cracks during production. 

Description:  

Used to generate severe or moderate events on selected PHP errors, when they occur, and identify 

real-time failures for given users. 

To select a PHP Error Level, scroll through the selection and use CTRL for multiple selections. The 

trigger type list is the same; therefore severe event selection takes priority over moderate event 

selection. 



PHP Intelligence 

27 

Additional Rules:  

Event reporting for PHP errors can be changed by setting error reporting to 0 or using the silence 

operator @. 

There are three options for activating Additional Rules:  

1. Always Report Errors - Ignore the error-reporting setting and the silence operator and report 

all PHP errors.  

2. Report errors that match the error-reporting criteria - Ignore all PHP errors silenced using 

either the error-reporting setting or the silence operator.  

3. Report any errors not silenced with the operator @ - Ignore the error-reporting setting and 

only ignore errors silenced with the silence operator. 

Function Error 

Functions return Function Errors and therefore offer specific information about the root of the error 

that does not always arise from PHP errors. 

QA and Production use this Event for identifying run-time events, as opposed to PHP errors that 

identify code-related/syntactical events. 

Function Errors can prove to be invaluable to an organization as they provide a different perspective 

on problems (view the outside problems through the eyes of PHP). Despite the fact that the code may 

be running okay, this Event indicates what other outside problems (i.e. network, database, web 

services, file system etc.) you may have, based on the PHP function’s behavior. Issues like these used 

to be difficult to reproduce however with the complete audit trail and full problem context, Function 

Errors can be easily reproduced to a level of accuracy that mirrors the actual time of occurrence. 

Description:  

Generate a severe event when an error in one of the specified PHP Functions (built-in or user-defined) 

fails (returns a FALSE value). 

To add a function, enter the name into the + field and press Add (+).  

There are three ways to monitor PHP functions: 

1. Specify the function name, object methods can also be used (for example, bar::foo).  

2. Use wild cards (*) to specify a range of function names for example myFunc_* will select all 

functions beginning with myFunc_. 

3. Specify the full path to a file containing a list of functions, each in a new line. 

Note: 

Database related functions are directed and reported as Database Errors (see the "Database Error" 

event type). 

Watched Functions File Event Types 

The Watched Functions file can add Function Error and Slow Function Execution event types (PHP 

Intelligence | Event Triggers) by entering a function in the field and pressing Add or specifying the full 

path to a file containing a list of functions. 

When users apply the Watched Functions file  to the “Function Error” Event Type, the functions 

included in the file will be monitored and an Event Details screen will be generated.   



Zend Platform for i5/OS User Guide  

28 

Slow Function Execution 
This is a performance-monitoring event. 

Slow Function Execution identifies bottlenecks within functions providing a more granular approach 

than finding bottlenecks in pages.  

This type of event is useful in the production process for pinpointing performance bottlenecks by 

watching functions that the user specifies. 

Slow Function Execution events provide a different perspective on problems (view outside problems 

through the eyes of PHP). Despite the fact that the code may be running okay, this Event indicates 

what other outside problems (i.e. network, database, web services, file system etc.) you may have, 

based on the PHP function’s behavior. This Event is also useful for catching pure PHP functions that 

are performing slowly.  

Description: Generates an event when function execution exceeds the setting defined in the rule. The 

default values are, 500 msec for moderate, 1000 msec for severe alerts. This applies to the functions 

selected in the additional rules section. 

Additional Rules:  

Generate events for specified PHP functions (built-in or user-defined). 

There are three ways monitor functions:  

1. Specify the function name, object methods can also be used (for example, bar::foo).  

2. Use wild cards (*) to specify a range of function names for example mysql_* will select all 

functions beginning with mysql_. 

3. Specify the full path to a file containing a list of functions, each in a new line. 

Note: 

Database related functions reported as Slow Query Execution events (see the "Slow Query Execution" 

event type). 

When applying a Watched Functions file to “Slow Function Execution” events, the functions included in 

the file are monitored and Event Reports are generated when the function execution exceeds the 

values defined to trigger a moderate or severe event.  



PHP Intelligence 

29 

Excess Memory Usage (Absolute and Relative) 
This is a performance-monitoring event. 

(Absolute – a customer configured hard number; Relative – a customer configured percentage) 

Excess Memory Usage events identify when scripts are using excess memory that can hinder the 

application's ability to perform. 

Production environments mainly use this event type but QA can also benefit from monitoring by KB or 

percentage of memory used by a script to execute.  

Description:  

 Excess Memory Usage (Absolute) - Generates an event when memory for PHP script 

execution uses more than a set amount of KB for moderate events and severe events. 

 Excess Memory Usage (Relative) - Generates an event when memory use for PHP script 

execution is above or below average, a set percent for moderate and severe events. 

Note:  

Both Event Types are only active if the PHP is compiled with memory limit. (Compile the PHP, with the 

configure switch "--enable-memory-limit". 

The default values for both of these event types are set to 0. To generate events, configure these 

settings to a value that suits required memory usage. 

Relative Events:  

Event definitions are based on relative values i.e. percentage. Relative values are set according to 

warm-up settings, default value of 500 requests. If necessary, change the 

zend_monitor.warmup_requests directive in the zend.ini. 

 



Zend Platform for i5/OS User Guide  

30 

Database Error 
Database Error Events report function errors such as: 

 Connection errors 

 Database selection errors 

 General database function errors 

These events do not require any additional configurations to the database. Production environments 

can use the information to delineate between a PHP problem and a database problem. 

Database Errors can prove to be invaluable to an organization as they provide insight into the 

Database reliability along with a different perspective on problems (view outside problems through the 

eyes of PHP). Issues like these used to be difficult to reproduce however with the complete audit trail 

and full problem context, Database Errors can be easily reproduced to a level of accuracy that mirrors 

the actual time of occurrence. 

Description:  

Database errors generate events when database-related functions fail. This event is directly 

associated to the "Function Error" event and is activated and defined in correlation with this event 

type. 

Database functions that should be reported are defined (or deleted) from the "Function Error" 

functions list. 

Note:  

To view supported databases, see the database related function prefixes listed in: 

<install_dir>/lib/db_functions.txt or in windows <install_dir>\lib\db_functions.txt. 

Slow Query Execution 
Slow Query Execution events identify slow queries that are related to database performance that can 

directly influence Web server performance. 

Slow queries, if not pinpointed, can bring the server down by: 

 Causing excess web server processes (Apache). 

 Hang up queries in the database causing slower responses in the database.  

These events do not require any additional configurations to the database. Production environments 

can use this information to pinpoint performance bottlenecks in the database. 

Description:  

Generates an event whenever database related function execution rises above the given threshold. 

This event is directly associated to the "Slow Function Execution" event and is activated and defined in 

correlation with this event type. 

Database functions that should be reported are defined in the "Slow Function Execution" function list 

(in additional rules). 

Note:  

To view supported databases, see the database related function prefixes listed in: 

<install_dir>/lib/db_functions.txt or in windows <install_dir>\lib\db_functions.txt. 



PHP Intelligence 

31 

Inconsistent Output Size 
Inconsistent Output Size events verify that pages render the same output to the client each time. If 

pages do not render the same each time, some clients are seeing different output than others and an 

error has occurred. 

Production environments use this event as an indicator for possible usability issues. 

Description:  

Inconsistent Output events generate an event whenever the output size is below or above the 

normally produced average output. The default values for this event type are set to 0. To generate 

events, configure these settings to a value that suits acceptable variance in percents from output to 

output of scripts.  

Relative Events:  

Event definitions are based on relative values i.e. percentage. Relative values are set according to 

warm-up settings, default value of 500 requests. If necessary, the default value can be modified 

manually by changing the zend_monitor.warmup_requests directive in the zend.ini. 

 

Load Average 
Load Average events monitor the overall health of processes running on the server. 

This event is used in production to highlight critical situations that might require analysis during high 

traffic situations.   

Description:  

In Unix, Mac, i5/OS and Linux this event is triggered when the number of active processes waiting for 

CPU time, is higher than the number defined in the rule. The default definitions for are set to 0 for 

moderate and 0 for severe events.  

 

In Windows this event is triggered when the CPU exceeds a certain load percentage threshold. The 

default definitions for Windows are 90% for moderate and 95% for severe.  

 

To start generating events set a logical value based on the server’s capabilities. 

Custom Events 
Custom events are a unique type of event for Zend Platform users to initiate events from scripts.  

This type of event is different from other event types because it controls event generation as opposed 

to other events that trigger events by a certain occurrence.  

Custom events are used to generate an event whenever the API function monitor_custom_event() is 

called from the PHP script. 

Description:  

This event type enables the generation of an event on occurrences that are not necessarily built-in 

Zend Platform events (error and performance issues). Custom events are used whenever you decide 

that it is significant to generate an event in a certain situation. Each event type is given a name for 

easy identification ($type). 



Zend Platform for i5/OS User Guide  

32 

Function Usage:  

monitor_custom_event(string $class, string $text[, integer $severe, mixed $user_data]) 

Parameters: 

 $class – helps to define several types of custom events. This description will be showed in the 

Event List and in the Event Details. 

 $text - error text used to describe the reason for the event. This text will appear in the Event 

Details. 

 $severe - the severity level of the triggered event, default value is Severe.  

 $user_data - adds a PHP variable that will be viewed in the Event Details (in Event Context-> 

Variables->User Defined). This forms the stored event data (similar to the information 

obtained in a PHP error event). 

Aggregation takes place for these events when two events occur in the same place and have the same 

$class $text $sever(ity) 

Note:  

Action Rules defined for these events should be set to “send to URL” rather than “sending by e-mail” 

as there is only one definition for these events and event reports sent to a URL can be easily 

forwarded elsewhere. This is to prevent the overloading of e-mail. If we use the e-mail action, for 

every custom event, e-mail will be sent, and there can be many classes of custom events. However if 

the URL action is used, a script can be used to identify the event’s class and different behaviors can be 

implemented according to class.  



PHP Intelligence 

33 

Define Event Actions 

Once Event Triggers are configured, the next logical step is to determine event actions and action 

rules. 

All Events are immediately reported inside Zend Platform’s PHP Intelligence module. Events can be 

viewed from: PHP Intelligence | Event List. However, Events and the information included in the Event 

Details screen can also be sent via E-mail or to a URL by configuring Event Triggers.  

Actions are applied to generated Events. 

All Events are immediately reported inside Zend Platform’s PHP Intelligence module.  

Events can be viewed from: PHP Intelligence | Event List.  

Event Actions enable sending Event details via E-mail, URL or by SNMP (Simple Network Management 

Protocol). 

To configure Event Actions go to: PHP Intelligence | Event Actions. 

There are two steps to defining event actions. The first is to define “Actions and the second is to 

define “Action Rules".  

 Actions determine how the Event Details will be sent by specifying an e-mail address, a URL 

or an SNMP alert.  

 Actions Rules determine which events by specific criteria will be sent. 

Note: 

Read more about SNMP Traps in Appendix G - About SMNP.  

Define Actions 

Clicking the Event Actions URL opens the Actions dialog. This dialog allows you to define or remove 

Actions for the entire cluster.    

 

Figure 10 - Event Actions 



Zend Platform for i5/OS User Guide  

34 

From the Actions screen you can: 

 Add/remove global Action Types from a central administrative station 

 View Action Types currently defined in the system 

To add an Action: 

1. Select one of the options from the Action Type drop-down list. 

2. Depending on the selection e-mail, URL or SNMP trap the action type details will change. 

3. Enter the information according to the selected Action Type: 

• Target URL for the action type “Submit a report to the specified URL” 

• Recipient Address and Subject for the Action Type, “Send a report via e-mail.” 

• SNMP: 

o NMS Target Machine - The SNMP Trap's destination address. 

o Community String - The Community and port (default port is 162, and the 

default community string is 'public'). 

o Download MIB (Management Information Base) file - Browse to find the MIB file 

and place it in the NMS. If a problem occurs accessing the MIB file, the relevant 

error will be given instead.  

4. Click "Add" to add the new Action Type to the “Current Action Types” list. 

Note:  

These Action Types can now be associated with Action Rules (see below). You can also change or 

remove the Action Type settings at any time. 

Zend Platform supports three types of reports:  

 E-mail Report - sends a text report to an e-mail recipient. This type of report is typically 

preferred by users who need to be notified of an event, but do not require the content of the 

report to be available for further use. 

 Send SNMP Trap - Sends an SNMP trap to a NMS address containing the events parameters. 

SNMP traps are used in order to send an SNMP alert to a management server. The process is 

as follows; once the SNMP trap action is set and an action rule with it is defined, as soon as 

there is an occurrence in the system the rule is triggered and an SNMP trap will be sent to 

the NMS address provided by the user when the action was set.  



PHP Intelligence 

35 

 XML Report - a structured XML report which is not only informative, but which can be made 

available for further use. For example, the .xml event data could be used as input for a 

monitoring script. The structure of the .xml report follows the structure shown below: 

#each attribute exists if it exists in the Event Details screen 

<?xml version="1.0" ?> 

<event type event_id timestamp time severity> 

#if there is an error: 

    <error type>error text</error> 

    <stats triggered_value avg load_average/> 

#if there is a source file: 

    <source file line/> 

    <script name host uri> 

        <vardata type name value/> 

    </script> 

#if there is a function: 

    <function name> 

        <args> 

            <arg num value/> 

        </args> 

    </function> 

#if there are included files: 

    <included_files> 

        <file name\> 

    </included_files> 

#if there is a backtrace for this event: 

    <backtrace> 

        <call depth function file line/> 

    </backtrace> 

</event> 

Define Action Rules 

The Define Action Rules screen is accessed from: PHP Intelligence | Action Rules. 

This screen ties together the elements of the rule-based notification system (monitoring and 

reporting) by creating a logical rule that can be understood as follows: 

When an Event of a user-defined Severity occurs in the user-designated Server, a specific Event 

Action (notification) will be invoked. 



Zend Platform for i5/OS User Guide  

36 

 

Figure 11 -  Define Action Rules 

From this screen you can: 

 Add/remove an Action Rule currently defined in the system. 

 View Action Rules currently defined for an Action Type in the system. 

 Edit an existing Action Rule and apply the changes. 

 Disable an Action Rule. 

To define Action Rules for a server: 

1. Select the Define Action Rules tab 

2. Enter Action Rule parameters in the Add a New Action Rule area.  

a. Select an Event from the Events combo. (For a complete list of Events supported in 

the current version of Zend Platform, refer to the Configure Alert Rules section 

above.) 

b. Select the severity from the drop-down list. 

c. Select a Server from the drop-down list of servers currently defined in the system. 

d. Select an Action from the drop-down list of Actions currently defined in the system. 

3. Click "Add" or "Save". 

a. Clicking "Add" adds the new Action Rule to the list of Action Rules defined in the 

system. 

b. Clicking "Save" applies the changes to a rule that you have edited. 

Note: 

Read more about how your organization can leverage information generated by events in the Tutorial 

- "Integrating Existing and Legacy Applications".  



Performance 

37 

Performance 

IN THIS CHAPTER... 

CONFIGURING PERFORMANCE 

PERFORMANCE TAB 

SETTINGS 

CODE ACCELERATION SETTINGS 

DYNAMIC CONTENT CACHING SETTINGS 

FILE COMPRESSION SETTINGS 

DOWNLOAD SERVER SETTINGS 

FILE VIEW TAB 

DYNAMIC CONTENT CACHING 

FULL PAGE CONTENT CACHING 

FILE COMPRESSION 

BLACKLISTS 

CONFIGURING THE ZEND DOWNLOAD SERVER (ZDS) 

TESTING THE ZDS 

Configuring Performance 

Customizing performance is a way to benefit from the Zend Platform advance performance features. 

Setting initial defaults enable the use of basic performance features. Additional configurations can be 

applied, to customize performance to correspond with organization-specific requirements. These 

configurations are addressed in the Chapter “Performance Lifecycle”. 

Performance Tab 
Zend Platform’s Performance settings are configured and viewed from: Performance |Console.  

The Console section of the Performance tab is a main performance management screen through which 

basic details and commonly used Performance actions can be viewed as follows:  

 

Figure 12 - Performance Tab - Console 



Zend Platform for i5/OS User Guide  

38 

Initially the Console shows the installation defaults’ regarding which feature is enabled (On or Off). 

Once changes are applied the console will be automatically updated with the new configuration 

settings (In some most changes are applied by restarting the Web-Server). 

The following table lists the details and options available from the Console tab: 

Component Console Details Actions 

Overall Performance Gain Shows the last performance 

test results. 

Update - leads to Performance | 

Testing | Analyze Site. From 

this Tab site analysis tests can 

be run and results can be 

viewed. Get Latest Detailed 

Performance Gain - leads to 

Performance | Testing | 

Analyze Site, with the last 

performance test results 

expanded on the screen. 

Code Acceleration Shows the Code Acceleration 

component’s status (On/Off) 

and basic code acceleration 

statistics. 

Reset – Clears the Code 

Accelerator memory. Settings - 

Leads to the Code Acceleration 

section of the Settings Tab. 

Dynamic Content Caching Shows the Content Caching 

component’s status (On/Off) 

and basic Content Caching 

statistics. 

Reset – Clears the content 

cache. Settings - Leads to the 

Dynamic Content Caching 

section of the Settings Tab. 

Add/Remove - leads to 

Performance | File View, where 

Cache settings can be 

added/Removed. 

File Compression Shows the Compression 

component’s status (On/Off) 

and file compression settings.  

Settings – Leads to the File 

Compression section of the 

Settings Tab. 

Download Server Shows the Download Server’s 

status (On/Off).  

Settings – leads to the 

Download Server section of the 

Settings Tab. 

At the bottom of the Console there are shortcuts to individual Test functions as follows:  

 Run Performance Test - runs a test that evaluates improved performance via Code 

Acceleration and Dynamic Content Caching.  

 Run Compression Test - runs a test that evaluates improved performance via File 

Compression.  

 Run Download Test - runs a test on a selected file that uses the Zend Download Server (ZDS) 

to check the positive affect the ZDS has on performance. 

Note: 

Selecting one of these options opens a link to the appropriate option in the Testing Tab (Performance 

| Testing) and will not run the test before setting the preferences. 



Performance 

39 

Once the overall functionality of the console has been established, the console can be used to apply 

initial performance settings. These settings are related to the following features:  

 The File View to make sure that all Virtual Hosts are visible and select files to be cached (full 

page) in the Dynamic Content Caching section 

 Use the ZDS (Zend download Server), to maximize large download handling over HTTP. 

Settings 
From the Performance Settings tab for a specific node, you can globally define the settings for all the 

modules of the Performance suite of tools: Code Acceleration, Dynamic Content Caching, File 

Compression and Zend Download Server. 

From this configuration pane, you can:  

 Configure performance monitoring and improve functions for a specific node  

 Manage Performance settings for the network from a central administrative station 

Code Acceleration Settings 

Code Acceleration Enabled 

"On" - The Code Acceleration is active and working. 

"Off" - The Code Acceleration is not in use. 

Accelerator Memory 

The amount of memory allocated for use by the Code Acceleration for storing data structures and 

accelerated files. 

Recommended: The memory allocated should correlate with the amount of scripts that you have, 

their size and complexity. Typically, 32MB is enough.  

Memory Reclaim Threshold 

During normal operation, some of the Code Acceleration memory may become unavailable for use. 

When the Code Acceleration runs out of memory, it will check how much of its memory is in use, and 

how much is unavailable. If the amount of unavailable memory is beyond this reclaim threshold, the 

Accelerator will perform an automatic restart, to reclaim all memory. 

Recommended: 5%  

Maximum Accelerated Files  

The maximal number of files that will be accelerated 

Recommended: Set this value to about 20% more than the actual number of scripts on your server. 

Typical memory usage ratio is a few hundred KB per thousand accelerated scripts. 

Extensions for PHP Files 

If your PHP files end with any other extension (rather than the default *.php extension), add all the 

extensions here separated by commas. 



Zend Platform for i5/OS User Guide  

40 

Dynamic Content Caching Settings 

Dynamic Caching Enabled  

"On" - The Dynamic Caching is active and working. 

"Off" - The Dynamic Caching is not being used. 

Maximum Cache Size 

The maximum disk size allocated for caching. Occasionally and for short periods, this value may be 

exceeded but only until the next time that the cache cleaner deletes the files that expired. 

For unlimited cache size, enter "0". 

Minimum Free Diskspace 

The minimum amount of free disk space that cannot be exceeded during caching. Reaching this value 

will end any further caching. The caching will resume as soon as the space is greater than this value. 

 Maximum Cached File Size  

The maximum output cache file size allowed. An output cache file that exceeds this value will not be 

cached. 

Default Cache Lifetime 

The lifetime (in seconds) of a cached data. The data will be re-generated if the cached version is older 

than the expiration time. 

Default Dynamic Caching Conditions 

By default, the Dynamic Content Caching will cache each request, based on its full URI. You can 

modify the settings to be more general or more specific, as desired. 

File Compression 

"None"  

All files are sent to the browser as is. 

"Only cached files" 

The cached files are transferred to the browser in a gzip format, if the browser supports the format. 

Other files are sent to the browser as is. 

"All files" 

All files are sent to the browser in a gzip format, if the browser supports the format. 

Note:  

Compressing all files may cause some overhead and affect the overall performance. Use "All files" if 

your main concern is improving the download time for the user. 



Performance 

41 

File View 
Most performance configurations are done in the File View screen. Before describing the configuration 

tasks, it is important to understand the screen’s layout and functionality. 

The File View screen consists of two sections: 

1. The Tree View on the left displays the list of directories and provides options for filtering the 

view (By status: Cached, Accelerated, Acceleration Blacklist, Compression Blacklist) the 

Virtual Hosts list is also updated from here. 

2. The File View on the right lists files and their status, and also includes the different caching, 

acceleration and compression options that can be applied to selected files or to entire 

directories. 

 

Figure 13 - File View  - Tree View and File View Sections 

Note:  

Status changes made in the File View screen are immediately reflected on the screen. However, the 

actual changes take affect only after manually restarting the HTTP Server. A reminder to restart 

Apache, will appear on screen after changes are made and disappears only after restarting the server. 

Tree View 

The Tree View on the left displays the directories available under a selected document root. All the 

directories are listed by default.  

The list includes filtering options to display directories by file type. To filter the list, select the file type 

from the drop down list.  

The filtering options are: All Files, Cached Files, Acceleration Blacklist Files, and Compression Blacklist 

Files. 

To refresh the list of files displayed on the right: click a directory’s name.  

Tree View - Virtual Hosts List 

The Tree View lists all the directories and files in the default Document Root as well as any Document 

Root listed in the Vhost List. Displaying all the directories and files enables to view files included in the 

Document Root directly from Zend Platform and select files for Dynamic Content Caching.  

Upon initial setup it is important to verify that all the applicable Virtual Hosts are included in the 

Virtual Hosts List for two distinct purposes: 



Zend Platform for i5/OS User Guide  

42 

1. To Benchmark test cached files. The Zend Benchmark (Performance | Testing) tests URLs per 

Virtual Host. 

2. To update the File View option to reflect all Virtual Host’s Document Roots.  

The Tree View option maps the entire Server’s Document Roots providing a single view for displaying 

all the available directories and their contained files. Adding and deleting a Virtual host should reflect 

the actual Document Root activity on the server. (I.e. if you add/remove a document root from the 

server, you should add/remove its respective Virtual Host from the list). 

Note: 

The initial installation process creates a default Virtual Host list however; this may not include all the 

required virtual hosts and some may need to be added/removed.  

Updating the Virtual Hosts List: 

In order for Platform Performance to display files residing in a particular Document Root, you must 

add the Virtual Host to the list 

The Virtual Host list in the File View reflects the current Virtual Host list as defined in Manage Cluster. 

You can update the list directly from the File View.  

To Add or Remove a Document Root: 

Go to Performance | Settings, and select Update Virtual Hosts to open the Virtual Hosts list. 

 

Figure 14 - Update Virtual Hosts List 

This screen includes two sections: 

• Update Virtual Hosts List – add a Virtual Host 

• Current Settings – Remove a Virtual Host and view current virtual hosts on the server. 

Make sure that all the necessary Virtual Hosts are displayed in this list if not use “Update Virtual Host 

“ to modify the list as necessary. 

To update the Virtual Host list: 

1. Go to Performance | File View and select Update Virtual Hosts List from the options at the top 

of the screen. This will open the Update Virtual Hosts List screen. 

2. Specify the virtual host’s details and provide an alias for the Virtual Host under Vhost Name. 

3. Press Add to save the new Virtual Host and add it to the Virtual Hosts list. 



Performance 

43 

File View - Dynamic Content Caching 

The File View displays files in a table, which can be sorted by column. The sorting options are: Status, 

File Name, Lifetime and Conditions.  

Once all the Virtual Hosts have been established, and the default Caching Conditions have been set; 

specific Content Caching settings can be applied to selected files or directories. 

Content Caching activities include the following in chronological order: 

1. Define default caching settings 

2. Modify file settings 

3. Fine tune caching conditions 

4. Define files to blacklist 

Define Caching Settings:  

The File View screen lists all the directories and files in the default Document Root as well as any 

Document Roots listed in the “Vhost List”. 

Any cached file that has not been explicitly defined, automatically inherits the default cache settings  

To open the File View screen, go to: Performance | File View. 

 

Figure 15 - File View 

The File view screen provides the following Full Page Content Caching options: 

  Cache - Select files to be cached and select, to enable content caching for the selected 

files. 

  Do not Cache - Disables Content Caching for the selected files. 

  Define Cache - Displays the “Define Caching Conditions” screen to add detailed 

configurations for selected files. 

  Update Blacklists - Opens and modifies the current Blacklist. 

  Clean - Cleans cached file copies. 

  Undo - Cancels the last change to the settings. 



Zend Platform for i5/OS User Guide  

44 

Modify File Settings 

To Modify File Settings: 

1. Select a directory in the Tree View. The list of files residing in that directory is displayed in 

the File View. 

2. Check the box next to the file(s) you wish to modify or the directory to select all files (and 

sub-directories) under it. 

3. Click on the relevant icon in the toolbar. 

Fine Tune Caching Conditions 

Caching conditions can be changed per file or group of files.  

To modify Caching Conditions: 

1. Check the box next to the directory or cached file(s). 

2. Click Define Cache to open the Define Caching Conditions Dialog. (Alternately, click on a 

Cached file i.e. a file with the Cached indicator  next to it). 

3. Apply Caching settings and press Save to save and close the dialog. 

  

Figure 16 - Define Caching Conditions 

Modified settings are displayed in the File View Tab next to the selected file/s. Restart the Web server 

in order to activate the new caching conditions. The restart server message remains on the screen 

until the server is restarted. 

The Define Caching Conditions dialog includes three buttons: 

 Restore Defaults - Returns to the default caching settings. 

 Save - The new settings are saved and are reflected on the screen but the changes will take 

effect only after restarting the server.  

 Cancel - Cancels the new changes and returns to the previous settings.  

Caching conditions may also apply to Variables stored in an Array. 

Note: 

Go to “Default Dynamic Caching Condition Parameters” for a complete list of applicable conditions. 



Performance 

45 

Note:  

The zend_cache.ini file contains the list of all the files and directories assigned for Dynamic Content 

Caching including all the Conditions, as follows: 

Use the File View to define the files and directories to be cached.  

Do not edit this file manually! 

zend_cache.lifetime=360 

zend_cache.depends=ALLGET 

zend_cache.path="/usr/local/apache/htdocs/hello.php" 

zend_cache.lifetime=360 

zend_cache.depends=COOKIE:my_cookie 

A large cache.ini file can possibly result in slow performance. Therefore, it is recommended to un-

cache (in the File View) any file deleted from the server. 

Define files to Blacklist 

The Blacklist separates acceleration and compression settings for files. With the blacklist users can 

prevent files from being accelerated or compressed. 

Dynamic Content Caching 

The concept behind Dynamic Content Caching is to store results of a first execution of a dynamically 

generated Web page. In this way, further requests made to the same page, will go to the Cache. 

Consequently, avoiding the overhead incurred by executing an application that renders output that 

does not change.  

Zend Platform offers two ways to Content Cache files: 

 Full Page Content Caching - for cases where it is possible to cache an entire output. 

 Partial Page Content Caching - for cases where it is impractical or impossible to cache the 

entire output.  

Note: 

A separate tutorial has been included at the end of this guide to present Partial Page Content Caching 

functions and concepts (Please refer to the Tutorial: Partial and Preemptive Page Caching). 

There are two caching conditions that can be applied to files: 

 Default Full Page Content Caching settings can be applied to all files marked as cached in: 

Performance | Settings and going to the Dynamic Content Caching section of the settings 

screen.  

 Specific Full Page Content Caching configurations can be applied to specific files by going to: 

Performance | File View.  



Zend Platform for i5/OS User Guide  

46 

Full Page Content Caching  

Default Full Page Content Caching settings are applied to all files marked as cached in: Performance | 

Settings and go to the Dynamic Content Caching section of the Settings screen.  

The content caching options are as follows: 

 Dynamic Content Settings 

 Default Caching Conditions 

 Default Dynamic Caching Condition Parameters  

 

Figure 17 - Dynamic Content Caching Settings 

Dynamic Content Settings 

The lifetime and conditions settings in the Settings tab are default values. These settings can be 

modified per file or per directory in the File View workspace. 

Dynamic Content Caching Settings are as follows: 

 Dynamic Caching Enabled - On The Dynamic Content Caching is active and working. Off – 

The Dynamic Content Caching is not in use. 

 Maximum Cache Size -The maximum size allocated for cache. Occasionally and for short 

periods of time, this value may be exceeded but only until the next time that the Cache 

Cleaner deletes the files that expired. Set to "0" for an unlimited cache size. 

 Minimum Free Disk space - The minimal reserved free disk space required. Reaching this 

value will end any further caching. The caching will resume as soon as the space is greater 

than this value. 

 Maximum Cached File Size - The maximum allowed output cache file size. An output cache 

file that exceeds this value will not be cached. Set to "0" for an unlimited cache size. 

 Default Cache Lifetime - The lifetime, in seconds, of cached data. The data will be re-

generated if the cached version is older than the expiration time. 

Note: 

The Cache Cleaner is directly related to the directive zend_accelerator.cache_cleaner_freq that can be 

defined in the Configure PHP Settings screen. This directive defines when expired cache files are 

removed from the cache. 



Performance 

47 

Default Caching Conditions 

By default, Dynamic Content Caching, caches each request based on its full URL (ALLGET). You can 

condition the settings to be more general or more specific, as desired.  

To change default caching conditions:  

Go to Performance | Settings and go to the Dynamic Content Caching section of the settings screen. 

Select, "Change Default Conditions" to open the "Define Default Caching Conditions" dialog. 

 

Figure 18 - Define Caching Conditions Dialog 

The default caching condition is ALLGET, which means that the entire GET string is used to identify a 

cached item. The GET string includes everything that appears after the question mark in a URL. (The 

ALLGET variables can be found in the $_GET PHP array as well). 

The following actions and conditions can be applied to the Default Caching settings:  

 To limit the ALLGET condition, select "Except" from the restrictions drop down list, to exclude 

a specific GET variable from the ALLGET.  

 To change the ALLGET condition, select a new condition from the drop down list. 

 To add another condition, click "Add Condition" and select another condition type from the 

list. Type the variables in the new condition row and restrict if necessary. The same condition 

can be used several times, each time with a different restriction. 

 To remove any condition, click the delete icon next to the condition you wish to cancel. 

 To change the Cache Lifetime’s duration, type the new number (in seconds). 

When all configurations are completed, click "Save" to save and close the dialog. Modified settings will 

be immediately displayed in the Settings tab. Click “Apply Changes” and restart the Web server to 

activate the new caching conditions. The message will remain on the screen until the server is actually 

restarted.  

Note:  

Caching conditions may also apply to Variables stored in an Array. 

Using Regular Expressions to Define Cache Conditions 

Caching conditions can also be set using regular expressions to create conditions. Use the Match 

regexp and Dismatch regexp options to define caching conditions. These can either be case-sensitive 

or incase-sensitive.  The regexp format is: “Unix Regular Expressions Format”. 



Zend Platform for i5/OS User Guide  

48 

Default Dynamic Caching Condition Parameters  

The following lists and describes each of the applicable parameters. 

 GET - Indicates that you have selected certain GET variables. For example, consider the URL: 

http://www.mysite.com/myscript.php?color=blue&size=L. When set to ALL GET, a new 

request for myscript.php?color=blue&size=M, will not be taken from the cache and will be 

regenerated. If, however, the setting is changed to GET, with the value ‘color’, then the two 

URL requests would both be taken from the same cache content, regardless of the order of 

the variables in the request string. (The GET variables can be found in the $_GET PHP array 

as well). 

 COOKIE - The Cookie variable is the variable given in the HTTP cookie. (It can be found in 

PHP $_COOKIE array as well). By selecting a cookie variable, it will also be considered a 

determining factor for cache hits, in the same way that GET variables are considered. 

 REQUEST - The variable is set by the GET or COOKIE methods. (Can be found in PHP 

$_REQUEST array as well).  

 SERVER - Server variable is set as a server environment variable When selecting a server 

variable, (those listed in PHP $_SERVER array) it will also be used as a determining factor for 

cache hits, in the same way that GET variables are considered. To define a Server variable, 

select a variable from the list or choose Add a new variable to type in another variable. 

 SESSION -The SESSION variable is useful when PHP sessions are in use. (Can be found in 

PHP $_SESSION array as well). Note: 1. If a script is cached using a SESSION variable and 

the session does not start in this script, the script will not be cached.2. If a script is cached 

using a SESSION variable, yet the cookies are disabled on the user side and the SESSION ID 

is embedded directly into the URL, the caching will not take place. 

 ALLSESSION - The script depends on all of the variables present in the session. (Can be 

found in $_SESSION PHP array as well). 

Note:  

It is mandatory to choose at least one Dependency. 



Performance 

49 

File Compression 

In order to maintain that Cached files improve overall performance, compression settings should be 

defined. These settings determine which files should be compressed. The mode of compression is gzip 

format – if the browser supports this format (If not, the data will be transferred un-zipped). 

To define compression settings:  

Go to: Performance | Settings and go to the File Compression section of the settings screen. Select 

the file compression option that reflects your requirements. 

 

Figure 19 - File Compression Settings 

File compression options are as follows: 

 None - File outputs are sent to the browser as is. 

 Only Cached Files - Only the cached files are transferred to the browser in a gzip format—if 

the browser supports the format. If not, the data will be transferred un-zipped. 

 All Files - Both accelerated and cached files are transferred to the browser in a gzip format—if 

the browser supports the format. If not, the data will be transferred un-zipped. 

Recommended: 

The recommended compression option is “Only Cached Files”, since the compression capabilities make 

use of the Dynamic Content Caching and there is no extra overhead for generating the compressed 

file (except for the very first time the URL is accessed.) Compressing accelerated files may cause 

some overhead and affect the overall performance. Use “All Files” if your main concern is improving 

the download time for the user.  

Note: 

There are some instances where it is preferable to deactivate compression for select files.  

To deactivate compression: 

 Deactivate compression entirely – should be done if the server is set to handle compression 

to prevent compressing files twice and rendering them unusable or when using PHP’s 

compression feature zlib. 

 Setting compression to "cached files only" – should be done when there is a large quantity of 

cached files and the rest of the files do not require compression. 

 Blacklist – selectively disable compression for files do not require compression such as 

pictures that are already compressed or small files that do not require compression. 

 Files under 1k are not compressed at all. 



Zend Platform for i5/OS User Guide  

50 

Blacklists 

The Blacklist separates acceleration and compression settings for files. With the blacklist users can 

prevent files from being accelerated or compressed. The blacklist is accessed from: Performance | File 

View and pressing the Update Blacklist Files button. 

 

Figure 20 - Update Blacklists Dialog 

This dialog has two distinct sections: 

1. Update the Blacklist – for defining blacklist criteria for selected files 

2. Current Blacklisted Files – for viewing current blacklist settings  

To update the Blacklist: 

1. Select a file or files from the File View by clicking the check box next to the file names. 

2. Click "Update Blacklist".  

This will open the Update Blacklists dialog with a list containing the selected files in the 

dialog.  

3. The following options can be applied to each file: 

• Add a file into the Acceleration Blacklist - Check the 'Don't Accelerate' box. 

• Add a file into the Compression Blacklist - Check the 'Don't Compress' box. 

• Remove a file from a blacklist - Un-check the appropriate box. 

• Add all the files to a blacklist - Check the appropriate box in the 'Select all' line at 

the top of the files list. 

Current Blacklisted Files: 

This section displays a list of files that are either not accelerated or not compressed or both. Files in 

the Compression Blacklist are not compressed (whether they are cached or accelerated). 

To see the files in a blacklist, click on the Expand button. 

Note: 

Only single files (not directories) are added to the Blacklist. 



Performance 

51 

Configuring the Zend Download Server (ZDS) 

(This feature is currently not applicable for Windows Operating Systems) 

The ZDS (Zend Download Server) is a PHP (Zend Engine) plug-in. The purpose of this plug-in is to 

efficiently deal with serving large, downloads. This is done to preserve website performance levels 

when handling large downloads that are served over the HTTP Protocol and consume bandwidth.  

Downloads include, Video Files, Binary Products (such as .exe and .msi files), and other large files 

which are served over the HTTP protocol, and can potentially limit the performance of your website.  

The ZDS provides two options: 

1. Configure ZDS Settings 

2. Test ZDS 

ZDS functions in two modes:   

 Manual Mode - Calling the API function zend_send_file() from PHP scripts.  

 Transparent Mode – mapping file extensions to zend_mime_types.ini  

Either mode can be run separately or in conjunction. Read on to find out how to configure the ZDS to 

run in either mode. 

Manual Mode 
In Manual mode, downloads are initiated by a PHP script that uses one all-purpose PHP function call. 

ZDS includes the PHP function zend_send_file(filename). Calling zend_send_file() immediately starts 

the file download and terminates your PHP script's execution. This effectively frees up the Apache 

process to handle the next incoming request.  

The zend_send_file() function can also serve files that are not under the Web server's document root. 

Furthermore, it can be used to run logical functions such as access restriction checks, before 

downloads are started.  

Usability Example 

If a download function is called my_send_file($filename), you should integrate the zend_send_file() 

call in the following way in your source code: 

if (function_exists("zend_send_file")) { 

    zend_send_file($filename); 

} else { 

    my_send_file($filename); 

} 

Alternate Method 

zend_send_file can also be set to accept a second argument, the mime type of the file. This will 

override the default mime type setting.  

The parameters are: zend_send_file(string filename[, string mime_type]) and it would be called in the 

following way in your source code: 

if (function_exists("zend_send_file")) { 

    zend_send_file("/path/to/file.wma", "video/my-wma-type"); 

} else { 

    my_send_file($filename); 

} 

Note: 

If the mime_type is not specified or empty, the first mime type mechanism is used. 



Zend Platform for i5/OS User Guide  

52 

Manual Mode Usability Notes: 

Do not create any output in Manual mode, before calling zend_send_file() - neither headers nor body - 

as this will interfere with the HTTP download. 

Once you call zend_send_file(), the script terminates, so make sure all of your business logic runs 

before you call this function. 

Sometimes files that are not under the same document root need to be served. Therefore, It is 

recommended to use the full path name to the file you want to serve. This will guarantee your script 

will work, even if you move it from your Web server's document root. 

Transparent Mode  
In Transparent mode, the file types that should be downloaded via ZDS are preconfigured, by 

mapping these files in the configuration file of your Web server. Files greater than the min_file_size 

directive will be automatically served by the ZDS.  

To run ZDS in Transparent mode, make sure you meet the following requirements: 

 The file extensions appear in the zend_mime_types.ini file and the file is mapped to the 

correct mime type.  

For example: to serve .mpeg files via the ZDS, add the following line in 

zend_mime_types.ini: 

video/mpeg mpeg 

 In your Apache Server’s configuration file, map the file type to PHP.   

 For example, to map all .mpeg files to the ZDS in Apache by adding the following line to the 

Apache Server’s configuration: 

AddType application/x-httpd-php .mpeg 

Usability Note for Mac OS (In case of persistent problems with this OS please contact Zend 
Support.) 

Mac Players cannot work when the file in the URL has .php extension. 

There are three suggested solutions to this issue based on different possible requirements: 

1) Use the following line where $new_name is the new file name.: 

header("Content-Disposition: attachment; filename={$new_name}"); 

2) Rename the extension to WMA (and assign the WMA extension to PHP). This will enable these files. 

However, by assigning the WMA extension to PHP, ZDS would automatically parse it as a download. 

Therefore the WMA extension should be removed from the mime types file. Please note that, files will 

now be delivered with default content type, which might have effect on other players. 

3) Add a condition to not auto-download these files, unless required by zend_send_file" 

4) Add a parameter to the zend_send_file with the required mime type. 

Both methods (manual mode and transparent mode) ensure that the Web application will continue to 

work even if, for some reason, you decide to temporarily disable the ZDS, (as long as the ZDS module 

was loaded). 



Performance 

53 

To Configure the ZDS:  

Go to Performance | Settings and go to the Zend Download Server Settings section of the Settings 

screen.  

 

 

Figure 21 - Zend Download Server Settings 

The settings screen contains three general ZDS configuration settings: 

 Minimum File Size - The minimum size of files that will be served by the ZDS. Small files 

need not be served by the ZDS, since performance gain is insignificant. Default: 64Kbytes. 

 Server MaxClients - The testing tool (in Platform Administration) uses this value to determine 

your server’s MaxClients. Keep this value updated to the actual number of max clients of 

your server. 

 Log File - The name and location of the log file where the ZDS reports completed downloads. 

Default: <install_dir>/logs. Make sure the directory exists and that the user who starts the 

Web server (usually root) has “write” permission. 

Server MaxClients Recommendation:  

The MaxClients setting depends on your server hardware. To achieve accurate test results the server 

should be set between 50-150 MaxClients. The MaxClients value must be the same in the Download 

Server Settings and the Web server’s configuration file. 

These settings are applied to downloads handled in one of the two handling modes: Manual and 

Transparent 

Testing the ZDS 
Once the ZDS has been configured a test can be run to check and analyze the overall efficiency.  

 The default ZDS test uses the Manual mode of operation to invoke a PHP script, which sends 

a file of approximately 300KB.  

 The same test tool can be used to check the Transparent mode. Make sure that you correctly 

map the file type you are checking in your Web server's configuration file - according to the 

configuration instructions. 

The test simulates multiple requests for a specified URL, with and without ZDS. There are three sets 

of tests, each test is performed twice (once with the ZDS disabled and once with the ZDS enabled). 

These tests differ in the number of concurrent clients that simultaneously perform requests to the 

server.  



Zend Platform for i5/OS User Guide  

54 

Note:  

It is extremely hard to artificially test ZDS. The main reason is that testing it on a LAN can easily 

saturate your local network, and if your MaxClients is very high, Apache Benchmark (ab) may have 

difficulty handling the concurrency. For this reason, it is recommended to test ZDS with a relatively 

low MaxClients setting (e.g., 50-150) so that you don't reach any of these limits. The ZDS includes a 

version of ab, which was modified to support bandwidth throttling, which is used by the testing tool. 

Caution: 

During a test, your Web server will be fully loaded. A test can take several minutes so you should run 

it on a development machine or on an offline production machine. 

To Test the ZDS:  

Go to Performance | Testing and go to the Test Download tab. 

  

Figure 22 - Performance - Testing – Test Download Tab 

The Test Download Tab consists of two sections: The test options are on the upper section and the 

test results appear below (after running a test or displaying the last test results). 

Running a Test 
1. Type in the URL you want to test. 

The default test is a PHP script which uses zend_send_file() to send a 300K zip file (Testing 

very large files will take a very long time). 

2. Choose the bandwidth limit you want to simulate for the clients. For a faster test, select a 

higher bandwidth (You cannot choose full bandwidth because your network card will be 

saturated, making the test irrelevant. The test tries to simulate a typical Internet server that 

has clients connected either by ISDN or DSL). 

3. Enter the number of maximum clients that your server can handle. 

Use the precise value by checking the value of the MaxClients directive in your server’s 

configuration file (The ZDS tries to identify your MaxClients value in the installation process, 

via the httpd.conf file, which is the default value. However, this value can be changed after 

the installation; and should be double-checked. Using an inaccurate MaxClients value, may 

not present accurate results). 



Performance 

55 

4. Click Run. 

Understanding Test Results 
Once the tests have completed, you will see two tables and graphs with results that show Requests 

per Second and Average Time per Request for each test run. 

  

Figure 23 - Zend Download Server - Test Results 

Disabling the Zend Accelerator changes the test configuration to cached scripts only. 

Note:  

If you do decide to run the ZDS Test on a production server, you can watch the log file to see how 

many concurrent jobs ZDS is handling. This indicates the number of Apache processes that would 

have been used if the ZDS were not installed. 



Zend Platform for i5/OS User Guide  

56 

Configuration Tab 

IN THIS CHAPTER... 

TUNNELING (COMMUNICATION SETTINGS) 

CONFIGURING PREFERENCES FOR TUNNELING 

CONFIGURING ZEND STUDIO TUNNELING SETTINGS 

ON DEMAND CONNECTION 

SERVER SETTINGS 

PHP CONFIGURATION 

PHP CONFIGURATION 

Tunneling (Communication Settings) 

Communication with Zend Studio facilitates the integration that combines Zend Platform’s event 

reporting capabilities with Zend Studio’s editing, debugging and profiling features.  

This integration provides an efficient way for managing the different stages of the development 

lifecycle. Zend Platform’s PHP Intelligence inspects performance and Zend Studio debugs, profiles and 

provides a means for resolving issues and deploying changes.  

There are two modes of communication with Zend Studio that accommodate different 

requirements: 

 Tunneling (*Auto Detect Mode) – creates a secure communication tunnel with Zend Studio 

(IDE) that keeps a persistent connection with the designated communication port. This mode 

of communication is the recommended mode of communication. It is also responsible for 

solving communication problems that arise when Zend Studio is behind a security devices 

such as a Firewall or NAT.  

 On-Demand Communication – creates a connection on demand. Selecting to edit, debug or 

profile code opens a connection that is closed once the action is completed. This requires 

defining the port and IP for direct communication with Zend Studio. 

*This feature is currently not applicable for Windows Operating Systems. 

 

Choosing a mode of communication depends on how your environment is set-up. If there are security 

devices and there is no limitation to keeping, a persistent connection use the Tunneling option - the 

preferred mode of communication. However, if for some reason it is not possible to keep the port 

connection open at all times, use the On-Demand Communication option, this option should be used 

when Zend Platform and Zend Studio are not separated by any security mediation devices. 

To Setup the Integration with the Zend Studio, there are several tasks that need to be performed 

depending on the type of connection you want to establish: 

 Configuring Zend Central Preferences for Tunneling Communication 

 Configuring Zend Studio’s Tunneling settings  

 Configuring Zend Central Preferences for On-Demand Communication 

 Configuring the Studio Server settings for Tunneling and On-Demand Communication 

 Debugger Tunneling Port Limits 

 



Configuration Tab 

57 

Configuring Preferences for Tunneling 
Communication Tunnel 

This persistent connection operates even when separated by a firewall. The advantage of this method 

is that it is possible to use the Zend Studio Integration on several nodes at once. For example, 

debugging an entire cluster of machines behind a load-balancer over a single debugger connection to 

Zend Platform's Studio Server component. 

The technology is based on two functional elements: 

 The Zend Studio that includes an internal Web server that listens on the local host on a 

specific Auto Detection port. 

 Zend Platform auto-evaluates Zend Studio’s Auto Detection port, by evaluating Zend Studio’s 

settings. These are the Tunnel Settings that are defined in Zend Platform.  

To establish a communication tunnel between Zend Platform and Zend Studio: 

Go to: Platform | Preferences. 

 

Figure 24 - Communication Tunnel Method 

In the Zend Platform Settings section, enable Auto detect the Zend Studio Settings by clicking On.  

This informs Zend Platform of the method of connection to Zend Studio. The relevant options/fields for 

configuring Tunneling are as described below: 

 Auto Detection Port - Indicates that Zend Studio will listen to the local host on the signified 

Auto Detection port - Default=20080. Leave empty to automatically identify the IP from the 

browser. 

 Test - Verifies if Zend Studio is listening to this port. This test should only be run when Zend 

Studio is running. 

 Method of passing the Zend Studio Server parameters - Defines the means for passing 

communication parameters from the Zend Platform to Zend Studio. Choose COOKIE or GET 

method.  

Configure communication as follows: 

1. Use the "Test" option to verify that Zend Studio’s Broadcast Port is set to the same port 

number as Platform ’s Auto Detection Port. 

2. Select a method of passing Zend Studio parameters. 

3. Click "Save". 

Note:  

The default method is Cookie, and it is recommended that you use the default. Platform supports a 

Get method as well that can be used if experiencing problems with Cookies.  



Zend Platform for i5/OS User Guide  

58 

Zend Platform establishes a communication tunnel with Zend Studio based on the default detection 

port. 

Note: 

Tunneling to Debug and Profile code with the Zend Studio is only possible if Zend Studio is open and 

running and Zend Studio’s Tunneling settings are properly configured in Zend Platform and Zend 

Studio. 

Configuring Zend Studio Tunneling Settings 

This feature enables Zend Platform users to connect to Zend Studio to edit, debug and profile Event 

source code using the Zend Studio IDE. 

Configuring the Communication Tunnel in Zend Studio 

To configure Tunneling Settings for Studio: 

1. Open the Tunneling dialog: Tools | Tunneling Settings: 

2. Define values for the following settings: 

• Tunnel Target Host - Address of the Web server on which the debugger resides.  

• Tunnel Target Port - Port of the Web server on which the debugger resides.  

• Specify Return Host - When enabled, this should contain the address of the main server 

in the cluster.  

• Automatically Connect on Startup - Enables the communication tunnel when Zend Studio 

starts up.  

• HTTP Authentication -Zend Studio Tunneling supports HTTP authentication. This enables 

users to send http authentication information (user name, password) together with the 

header sent to the server. Therefore, you can specify that tunneling to a server will 

require authentication, and improve security by adding information in the following 

fields: 

o Send Authentication Information - Use this option when working with a Web server 

that requires HTTP authentication. Zend Studio sends the authentication information 

in the header.  

Note: This assumes the user account is set up on the Web server.  

o User Name - User name as defined on the Web server.  

o Password - User password as defined on the Web server. Note: Whenever you use 

the debugger, the server will use the User Name and Password specified here.  

3. Click "Connect" for Zend Studio to connect to the Tunnel Target Host over the specified port. 

Note:  

Information in Zend Studio's Debug Preferences, must match the information in Zend Studio’s 

Tunneling Settings for tunneling to work.  



Configuration Tab 

59 

 

Figure 25 - Zend Studio Tunneling Configuration 



Zend Platform for i5/OS User Guide  

60 

Debug Preferences 

To view debug preferences to ensure that the information is suits the Tunneling Preferences go in 

Zend Studio to:  Tools | Preferences | Debug: 

 

Figure 26 - Zend Studio Debug Preferences 

In the section called "Connection to debug server", make sure the following settings are 

configured: 

 Debug Mode - Sets the Debugger to Internal or Remote. Select remote for integrating with 

Zend Platform 

 Debugger Server URL - The IP or URL of the host that runs the Zend Debug Server. To check 

the connection to the debug server, select the Check Debug Server Connection, from the 

Debug menu. If the test fails, check the list of common problems in Appendix A – 

Troubleshooting Zend Platform. 

 Client IP - Set the IP address of Zend Studio’s host machine.  

 Client Debug Port - Set the port number for communication with the Zend Debug Server  

 Broadcasting Port - Zend Studio’s communication tunnel is implemented via a persistent 

broadcasting port that broadcasts information about tunneling to Zend Platform. Specify the 

port number in this field. 



Configuration Tab 

61 

 Dummy File - This file used during the debug process for storing interim information.  

 Server Response Timeout - The amount of time allowed for a server response. If no response 

is received within this time, a notification will be generated to inform you that the Server is 

not responding.  

 Encrypt Communications using SSL - To enable SSL encryption make sure this option is 

selected here and in Zend Platform’s Zend Central | Preferences. 

Studio Settings 

Studio is Zend Platform’s embedded integration with Zend Studio's debugger. The Studio component 

is part of the Zend Platform node installation, ensuring that an instance of the debugger resides on 

every node. 

Studio settings provide a way for allowing or denying accessibility to a selected server or to a selection 

of servers (using a Net Mask which implements Wildcards on IP addresses). 

 

To access Studio Settings go to: Configuration | Studio. 

 

Figure 27 - Studio Server Settings 

The Studio Settings screen displays the Studio settings for the selected node (The server is selected in 

the server tree).  



Zend Platform for i5/OS User Guide  

62 

There are four settings categories: 

 Allowed Hosts - These are the hosts that are allowed to initiate debugging and profiling 

sessions. 

 Denied Hosts - These are the hosts that are not allowed to initiate debugging and profiling 

sessions, even if they are on the Allowed Hosts list.  

 Allowed Hosts for Tunneling - These are the hosts that are allowed to use this node for 

tunneling. The Zend Studio Tunnel is used for debugging PHP code across a firewall to use 

the integration with the Zend Studio. Note: Tunneling is not supported in Windows. 

 Other Settings - These are additional settings supported by Zend Platform. Currently, 

“Expose Remotely” is the only setting in this category. This setting determines whether the 

Debug Server will expose itself to remote clients. This is required if you want the Zend Studio 

Browser Toolbar to automatically detect pages that can be debugged.  

The Settings screen is for Adding, Editing or Removing a host from the Allowed Hosts, Denied Hosts, 

or Allowed Hosts for Tunneling categories. You can also assign a value (Always, Selective, or Never) to 

the Expose Remotely setting for the selected node.  

"Expose Remotely" settings: 

 Always  - Will expose all hosts 

 Selective - Only exposes the hosts in the allowed host list 

 Never - Will not expose any host 

 To access the Studio Server tab: 

1. Go to Configuration |Studio. 

2. From the Server Tree, select the server you wish to configure (or whose settings you wish to 

view). 

3. Click "Select "to open the Studio Server tab for the selected node. 

To change or add a host to allow or deny tunneling: 

1. Go to Configuration | Studio. 

2. Click "Add" - for example, in the Allowed Hosts category to open the Add New Allowed Host 

dialog box opens. 

3. Enter the Settings for the new Allowed Host. 

4. Click "Apply" - A new Host will appear in the Allowed Hosts category on the Server Settings 

screen. 

5. To edit or remove a Host - for example, in the Allowed Hosts category, click "Edit" or" 

Remove" (To the right of the Server Host you wish to edit). 

You will be prompted to confirm your new settings click "Save" to save the settings to the database. 

To set the Expose Remotely setting for the selected node, select a value, Always, Selective, or Never, 

from the drop-down list provided. 

Net Masks:  

The Net Mask option is used to define a string of IP addresses using wildcards * to specify the range 

of IPs that are either allowed or denied hosts. This option, allows to specify a range of IPs from 0-255 

according to the selected amount of wildcards for example if you choose to use the Net Mask option to 

deny the following IPs: 24 (10.1.3. *) all IP addresses beginning with 10.1.3 will be denied access to 

the Zend Studio Server (i.e. Integration with Zend Studio will not be permitted for these IP 

addresses). 



Configuration Tab 

63 

Debugger Tunneling Port Limits 

To ensure persistent connections while using Tunneling over firewalls for debugging event information 

in Zend Platform or debugging scripts edited in Zend Studio, you can modify the following zend.ini 

directives that define a port range. 

The directives are: 

 “zend_debugger.tunnel_min_port” 

Description: Minimal possible value of Debugger tunneling port 

Default value: 1024 

 “zend_debugger.tunnel_max_port” 

Description: Maximal possible value of Debugger tunneling port 

Default value: 65535 

Note: 

The Debugger uses the default values either when the directives are not present in the Zend ini, or if 

one of them is invalid. If the directives are not present, the Debugger will revert to random port 

allocation and not from a predefined range of ports. 

These directives define a port range for Tunneling. While Tunneling, the Debugger will try to locate a 

free port starting from the minimum value defined in the “zend_debugger.tunnel_min_port” directive, 

but not above the maximal value defined in the “zend_debugger.tunnel_max_port” directive. Another 

consideration when defining a port range is, to ensure the amount of ports opened correspond to the 

amount of possible debugger connections that may occur i.e. the range should reflect the amount of 

Zend Studio’s you have in your organization. 

In parallel, the System Administrator must ensure the proper firewall policies [rules] are set to allow 

communication via the selected ports, in order for the tunneling to work. 

The tunnel server, and not the debugger, uses these tunnel settings. The debugger will still use 

random ports for debugging. 

Possible Error Message: 

Could not find a free TCP port for tunneling. Please re-adjust the 'zend_debugger.tunnel_min_port' 

and 'zend_debugger.tunnel_max_port' directives in the php.ini file.  

This means the Debugger could not find a free port to establish a communication tunnel, make sure 

you have defined an adequate port range in the directives. If the problem persists, consider checking 

the firewall policies. 

PHP Configuration 

The PHP Settings screen is the configuration tool for customizing PHP and Zend products, by 

modifying directives and extensions in the php.ini and zend.ini files. 

Configuration options are separated by type (Directives and Extensions) in expandable lists. The [+/-] 

signs indicate if there are more options related to that list item or not. 

Clicking on the Plus Icon [+] will expand the lists to expose the different options and where 

applicable, input fields are added to change an option's value. Alternatively, clicking the Minus Icon [-] 

will contract the list leaving only the option type visible. 

Most of the directives can be viewed and modified. Directives that should not be changed under any 

circumstances are disabled (grayed out). 

The directives and extensions sections are separated into two as follows: 



Zend Platform for i5/OS User Guide  

64 

 PHP Section - The PHP section reflects the exact content of the php.ini on the selected server. 

Changing directives in this section will change the php.ini settings. 

 ZEND Section - This section contains Zend Product directives. Changes to this section are 

applied to the zend.ini or the php.ini according to their origin. Some of these directives do 

not require restarting the server. An indication will be given regarding which directives 

require restart and which changes will be automatically applied. (See Appendix F for a 

complete list of the directives and their settings) 

Note:  

Most of the directives can be viewed and modified. Directives that should not be changed under any 

circumstances are disabled (grayed out). Directives that are commented in the php.ini are only viewed 

in the PHP Configuration screen when the comment is removed. As an added precaution, changes that 

will be done to the php.ini will require entering your php.ini password, as defined in the 

'zend_gui_password' directive (the password is MD5'ed). To change the password go to: Zend Central 

| Preferences. 

Finding a Directive/Extension 

Search for a directive or an extension by using the "Quick Filter" field. The "Quick Filter" allows to 

search for a directive or an extension that contains a certain word or combination of letters in its 

name or description. 

To find a Directive or extension: 

Go to Configuration | PHP Configuration and enter the directive into the Quick Filter Field. 

Configuring Settings for a Server (Node) 
To configure Settings: 

1. Go to Configuration | PHP Configuration or use the shortcut from Platform | Dashboard | 

Configure PHP Settings.  

2. Use the + symbol to select and expand the PHP entry you wish to edit or use the "Quick 

Filter" to search for a directive or an extension that contains a certain word or combination of 

letters in its name or description. 

In both cases the expanded line will open with an active field for editing directive’s 

parameters. 

3. In the Value column, enter a new setting in the editable field provided.  

Changed setting's backgrounds will automatically change to a darker shade of blue indicating 

that it has been modified and will stay that way until the "Save Settings" button is clicked.  

4. Click "Save Settings".  

The new settings will be registered to the php.ini configuration file (you may be asked for 

your php.ini password for critical changes). 



Configuration Tab 

65 

 

Figure 28 - PHP Configuration 

 



Zend Platform for i5/OS User Guide  

66 

Users and Groups 

IN THIS CHAPTER... 

USER MANAGEMENT 

ADDING AND EDITING USERS 

ADDING AND EDITING GROUPS 

FILTERING EVENT TRIGGERS 

USER SETTINGS 

PASSWORD ADMINISTRATION 

User Management 

Granting different levels of permissions to different users provides a means for controlling actions 

performed in the environment and enforcing work procedures. This is the last step to customizing 

Zend Platform to suit your working environment.  

Zend Central’s User Management tab includes Platform’s multiple users functionality. This feature set 

allows different users to login to Platform.  

Each user has a set of permissions that are defined by the system administrator that 

determine: 

 Data the user is allowed to view  

 Zend products the user is allowed to access  

 Actions the user is allowed to perform  

The User Management workspace displays information about the users currently defined in the 

system. It also provides shortcuts to the User Management functions supported by Zend Platform. 

 

Figure 29 - User Management 



Users and Groups 

67 

The information fields and functions that make up the User Information workspace are as follows: 

 User Name - Displays the name of the User who is currently logged in to Zend Platform. 

 Existing Users - A list of users currently defined in the system.  

 Group Name - Users are defined within the system as belonging to a particular group—and 

not as independent entities. This is the name of the Permission Group to which the User 

belongs. 

 Has Server Restriction - The specific user is restricted from performing certain actions on a 

specific server. 

 Handle Groups - Selects the group whose attributes you wish to edit or remove entirely. 

 Edit/Remove - Allows you to edit or remove entirely the settings for a specific User of a 

specific Group. 

 Add a New User - A shortcut to the Add a New User Wizard. 

 Add a New Group - A shortcut to the Add a New Group Wizard. 

Adding and Editing Users 

Zend Platform allows you to Add/Edit Zend Platform users under the following conditions: 

1. The master user adding new users must have administrative level permissions in the system. 

2. New users must be added to an existing group. Users are defined as belonging to a particular 

group - not as independent entities. 

Adding a User 

Zend Platform allows Administrator-level users to create new users.  

To add a new user: 

1. Click the Add a New User button in the lower left corner of the User Management workspace.  

The Add a New User wizard opens. 

2. In the Add New User wizard, define the following General User Settings: 

• User Name - Enter a User Name that the User will use when logging in to Platform 

Administration. 

• Password - Enter a Password that the User will use when logging in to Platform 

Administration. 

Platform Administration Passwords, may contain, between 4-16 characters including 

the following: the alphanumeric characters 'a' through 'z', 'A' through 'Z' and '0' 

through '9' and the special characters (-) dash, (_) underscore and (.) period. 

• Confirm Password - Confirm the Password. 

• Permissions Group - Select the Permissions Group to which the New User will be 

assigned from the list of Permissions Groups that are currently defined in the 

system. 

3. Click Next to go to the second step. 

4. In the Add New User wizard (2) Select the servers that you wish to allow the New User to 

access. 

5. Click Finish. 

The new user will be created in the database, with the defined permissions. 



Zend Platform for i5/OS User Guide  

68 

Note: 

Added/Edited users can only view and edit events for the servers the User has permission to access. 

Conversely, servers denied to the User will not appear in the server tree when the User logs in to the 

system. 

Editing a User 
Zend Platform allows administrator-level users to edit the preferences for any User currently defined 

in the system. Non-administrator users can use this option to modify their password.  

To edit user preferences: 

1. Click the Edit button to the right of the user whose preferences you wish to edit. 

The Edit User Wizard opens with the user’s name appearing in the User Name field. 

2. In Edit User wizard – Step 1, define the following General User Settings: 

• Password - Enter a Password only if you wish to change the Password for that User; 

otherwise leave the Password field empty. 

• Confirm Password - Confirm the Password only if you are changing the Password for 

the User. 

• Permissions Group - Select the Permissions Group to which the User will be assigned 

from the list of Permissions Groups that are currently defined in the system. 

3. Click Next to go to the second step.  

4. In the Edit User wizard (2) screen, select the servers that you wish to allow the User to 

access. 

5. Click Finish. 

The changes will be applied to the User settings and saved in the database. 

Adding and Editing Groups 

Add/Edit a Group 

Zend Platform allows Administrator-level users to create new groups and define user access 

permissions.  

To create a New Group: 

1. Click the Add a New Group button in the lower left corner of the User Management workspace 

to open the Add a New Group dialog.  

2. In the Add New Group dialog, select the preferences and permissions to assign to the New 

Group from the table. 

3. Enter a name for the New Group. 

Note: 

Remember to click Save to save changes or create a Group in the database and register its settings. 

The following is a list of group preferences and their definitions: 

 Group Name - Enter a name for the New Group 

 Delete an event - Enables the Delete Event option, for deleting events in the Event Details 

screen and the Event Window. 

 Ignore an event - Enables the Ignore Event option, for ignoring events in the Event Details 

screen and the Event List Window. 



Users and Groups 

69 

 Close an event - Enables the Close Event option, for closing events in the Event Details 

screen and the Event List Window. 

 Reopen an event - Enables the Reopen Event option, for reopening events in the Event 

Details screen. 

 Preserve an Event - Enables the Preserve Event option, for preserving (saving) events in the 

Event Details screen and the Event List Window. 

 See the event context data in Event Details - Allows users belonging to group to view the 

event internal data (variables, included files) from the Event Details screen. 

 See the event source code in Event Details - Allows users to view the event source code in 

the Event Details embedded viewer. 

 Use the Zend Studio Integration - Allows users to view, profile and debug event source code 

in Zend Studio. 

 Changing Zend Platform Settings (in the Preferences) - Allows users to change preferences in 

Platform | Preferences.  

 Configure and change the Event Actions - Allows users to configure and change Event Actions 

from the Event Actions screen.  

 Configure and change the Event Action Rules - Allows users to configure and change Action 

Rules from the Define Action Types/Rules screen.  

 Manage Server - Allows users to manage servers from the Manage Cluster screen.  

 Manage VHosts - Allows users to manage Virtual Hosts from the Manage Cluster screen.  

 Manage Groups - Allows users to add and change group settings from the Manage Clusters 

screen.  

 Update all Information - Allows users to update server data.  

 Use Support Tool - Allows users belonging to the group to access the Support Tool from the 

Support Tool link.  

 Go into the Event Triggers Section - Allows users to configure and change Event Triggers 

from the Event Triggers screen.  

 Configure PHP settings - Allows users to configure and change PHP settings from the 

Configure PHP Settings screen.  

 Go into the Performance section of nodes - Allows users to access the Performance Tab for 

nodes.  

 Go to the Configuration section of nodes - Allows users to access the Configuration Tab for 

nodes.  

 Go in the Integration section of nodes - Allows users to access the Integration (Java Bridge, 

BIRT Reports) Tab for nodes. 

 Go into the Queue Section - Allows users to access the Job Queues Tab. 

 Manage Licenses - load and edit licenses. 

 Use Web Services - Use the web Services API 

 



Zend Platform for i5/OS User Guide  

70 

User Settings 

User settings are retained in the system in several ways: 

 User Group settings are stored in the configuration database. 

 Platform's User Management Tab remembers each user’s last settings. The user’s last 

settings automatically populate the component fields, when opening any of the sub-screens 

and dialog boxes that make up the User Management Tab.  

Passwords 

Password Structure 

Platform Administration Passwords, may contain, between 4-16 characters including the following: the 

alphanumeric characters 'a' through 'z', 'A' through 'Z' and '0' through '9' and the special characters (-

) dash, (_) underscore and (.) period 

System Passwords 

There are three kinds of passwords: 

1. The admin user Platform Administration account 

2. The central registration password (you need this password to register a new node) 

3. Each node ini_modifier/Platform Administration password 

Password Specifications 

 The admin user password can be changed from: Dashboard |Preferences. 

 The change_zend_gui_password.sh script changes the admin account and the Zend Central 

registration password. 

 If you have a node/s on the central machine, then 2+3 are the same. 

 If you install a node-only, then will change_zend_gui_password.sh not be installed and you 

will not be able to change the ini_modifier password. It will be permanently set to be the 

same as the central registration password at the time of the registration. 



Licenses 

71 

Licenses 

IN THIS CHAPTER... 

LICENSE MANAGEMENT 

ABOUT ZEND PLATFORM LICENSES 

MANAGING LICENSES 

ACQUIRING A LICENSE 

License Management 

The License Management tab (Platform | License Management) allows you to manage licenses and 

view their status. the License Management tab is a central management tab for all the nodes 

governed by the Central Server.   

About Zend Platform Licenses 

There are four different types of licenses available for Zend Platform: 

 Production-Enterprise: The Enterprise Server includes the performance management features 

along with Job management and Integration tools for Multi-Cluster enterprises. 

 Production-Performance Management: The Performance Management Server includes the 

Platform, PHP Intelligence, Performance and Configuration tabs. This version is suited for 

production environments that can benefit from the information collected in events and the 

performance optimization tools.  

 Development-Enterprise: The Enterprise Server is a full featured development version. This 

version includes features that can assist in the development lifecycle (PHP Intelligence and 

Performance) and provide an environment suitable for developing multi-cluster enterprise 

web applications (integration with Zend Studio, Actuate Reports etc.).This license is suitable 

for development environments and licenses a single Central Server (without additional 

nodes). 

 Trial: A 30 day fully featured evaluation version of Zend Platform. After the 30 days, only the 

Server functionality for remote debugging will continue to work without a license. 

Managing Licenses 
The Manage License screen, displays a summary of all the licenses by type and if they are Active 

(valid) or Expired. The summary includes details about the number of licenses by type and total 

quantity of licenses. Licenses that have errors in them (for example: a corrupted license file) are 

included in the Expired license summary. 

Below the License Summary is a detailed table that displays the details of each license, per server. 

The actions that can be performed through the table are: sort, acquire license and update information. 

Sort: rearranges the licenses displayed in the table, by a selected column. To do so, click the column 

heading and the contents of the table will be automatically sorted by server name, type, status or 

expiration date. 

Acquire License: This option is used to obtain and install license files. This option should be used to 

activate new licenses for each server that appears in the list. Once the license has expired use this 

option again to update the license. 

Update Information: Updates information for a specific node to the Central Database.  



Zend Platform for i5/OS User Guide  

72 

To manage your licenses: 

Go to Platform | License Management. The License Management screen will appear.  

 

Figure 30 - License Management Tab 

This screen displays the names of all servers (servers that are currently available and servers that 

were once connected), related statistics, license type and Zend Platform license status. 

From this screen you can: 

 Update All Information: Located in the top right corner of the screen, this button reads the 

license data from all the nodes and updates the Central Database. This action has to be done 

after making changes to the node licenses. This button should be used when you need to 

update all the nodes. If you need to update only a specific node, use the Update Information 

option. 

 Update Information: Located in the license details table, this button reads the license data 

from a selected node and updates the Central Database. This action has to be done after 

making changes to the node's license. This button should be used when you need to update a 

selected node. If you need to update all the nodes, use the Update all Information option. 

 Acquire License: obtain and attach a license file to a specific server. 



Licenses 

73 

Acquiring a License 

1. To acquire a valid license for a specific server, click on the "Acquire" icon corresponding to 

the server. The "Acquire License Wizard" will appear. 

 

Figure 31 - Acquire License 

2. The Acquire License screen includes 5 steps, follow the instructions in steps 1-3 in order to 

obtain, store and upload your license file.  

3. Once the license file is put into place follow step 4 and restart the designated server (if the 

license is for a node the designated node should be restarted. 

4. After restarting the server use step 5 to update the server with the new license's information.  

5. The Server's status in the table should change to show the uploaded license type, if this does 

not happen, open a ticket with support at: http://www.zend.com/support. 

 

This completes the Administration and Configuration chapter of the User Guide. In this section we 

have described the different configuration and administration tasks that can be done. In the next 

chapter we will describe how to implement Zend Platform in the working environment by using PHP 

Intelligence to create a Problem Resolution lifecycle. 

Please refer to “Appendix B – Configuration Check List” to read/print the Zend Platform 

Configuration Check List that summarizes the configuration tasks. 

 



Zend Platform for i5/OS User Guide 

74 

PART III: PERFORMANCE MANAGEMENT SERVER 
The Zend Platform Performance Management server is a comprehensive set of tools for boosting PHP 

script performance and managing PHP applications. 

The Zend Platform Performance Management Server components are: 

 Platform (Management Console) - Includes the Dashboard, Preferences, license Management 

and User Management. 

 PHP Intelligence - Event configuration, handling and management. 

 Performance - Code Acceleration, Dynamic Content Caching, Benchmark and File 

Compression. 

 Configuration - PHP and server configurations. 



The Problem Resolution Lifecycle 

75 

The Problem Resolution Lifecycle  

IN THIS CHAPTER… 

THE PROBLEM RESOLUTION LIFECYCLE 

CREATING EVENTS  

FINDING EVENTS THAT INTEREST YOU 

UNDERSTANDING EVENT DETAILS  

CONTROLLING INFORMATION DISPLAYED IN AN EVENT 

CUSTOMIZING EVENTS  

DATABASE MAINTENANCE  

GRAPHS 

In this chapter we will discuss how PHP Intelligence can provide improved communication between 

developers, managers and QA teams through implementing the Problem Resolution Lifecycle.  

The Problem Resolution Lifecycle 

Developing and maintaining Web applications is an intricate and highly demanding process. Zend 

Platform facilitates the intricacies of the development process by employing an efficient problem 

resolution infrastructure – “the Problem Resolution Lifecycle.” This infrastructure’s main goal is to help 

make the most out of challenging environments and tight schedules and prevent problematic issues 

from falling between the cracks.  

With the Problem Resolution Lifecycle, organizations can improve communication between the 

development, testing and IT teams to streamline the development and deployment processes. 

Using PHP Intelligence in development and production environments unifies the working environment 

and ensures improved information collection and distribution between development teams, testing 

teams and IT teams (See illustration below).  

 

Figure 32 - Problem Resolution Lifecycle 

Using Zend Platform in your working environment ensures that pertinent and focused information 

reaches the right person at the right time. The enhanced information exchange results in major 

improvements in quality of code, time to production and overall performance and stability. The 

subsequent benefit is more resources dedicated to activities focused on improving and expanding the 



Zend Platform for i5/OS User Guide  

76 

current application and less time spent on locating information necessary for recreating and resolving 

code and performance issues 

In the Problem Resolution Lifecycle, PHP Intelligence assists the efforts of the development, testing 

and IT teams to quickly pinpoint, analyze, and resolve issues such as: PHP Slow Script Execution, 

Function Errors, Database Errors etc. 

 

Figure 33 - Problem Resolution Workflow 

Zend Platform’s PHP Intelligence functionality is enhanced by:  

 Implementing customized Event Rules to areas prone to problems in your unique 

environment – facilitating focused and efficient problem resolution.   

 Analyzing “Full Problem Context” grants a detailed insight of problematic occurrences.  

 Integrating with Zend Studio to resolve problems with state-of-the-art development and 

debugging tools. 

Implementing the Problem Resolution Lifecycle 

The Problem Resolution Lifecycle is a process of defining PHP Intelligence Event Triggers according to 

acceptable run-time, performance parameters. PHP Intelligence enforces Event Triggers and issues 

Event information in an Event Details screen according to the Event Trigger definitions. When an 

Event occurs, PHP Intelligence compiles a complete profile of the Event’s occurrence and its precise 

details. An Event Details screen includes comprehensive details in order to enable developers and 

testers to recreate the Event in a way that mirrors the conditions of the original occurrence. This 

information can then be used to diagnose problems by fine-tuning Event Triggers to accommodate 

normal occurrences or resolve actual run-time problems and errors.  

With Zend Studio Diagnostics, problems and errors can be easily diagnosed using the Event Details 

screen functions, Test URL and Profile URL, and further information can be analyzed using Debug URL 

and Show Source Code. In addition, problems in code can be immediately resolved using the Zend 

Studio Editor which allows changes to be immediately made and deployed, not only to a single server 

but also to all nodes belonging to the same Group. 

Events can be preserved to leave an indicator of these occurrences if necessary. Furthermore, user 

permissions can define who is permitted to perform actions inside an Event Details screen; enforcing a 

structure that encourages communication between the different teams. 



The Problem Resolution Lifecycle 

77 

Creating Events  

Event generation is an out-of-the-box feature. Directly after installation, Zend Platform’s PHP 

Intelligence will begin to monitor events according to Default Settings. To further enhance the 

effectiveness of PHP Intelligence, events thresholds can be customized. In a similar manner thresholds 

can be gradually modified to not only reflect improvements in performance but also to verify that 

problematic issues have been resolved.  

Configuring Events 

Events can be configured according to each environment’s specific requirements. The main 

configuration changes that should be done are to do with tuning Event Trigger values and defining a 

list of Functions and PHP errors to be monitored.  

To Configure Event Triggers, go to PHP Intelligence | Event Triggers and change the default settings 

according to your requirements.  

A help button  appears next to each Event Type. Pressing this button will display a description of 

the selected Event and the Event’s parameters (alternately go to Choosing and Defining Event 

Triggers). 

Disabling Events (Triggers) 

In some cases there may be Events that are either not applicable to your system or unnecessary. 

Events are disabled from the PHP Intelligence module. When an event is disabled the event will not be 

monitored and no event information will be stored. 

Disable Event Triggers 

To disable Event Triggers go to PHP Intelligence | Event Triggers and select “Configure Event 

Triggers.” 

In the Define Event Triggers Table, the Check box in the Active Column indicates if an Event Type is 

monitored or not.  

To prevent a selected Event from being monitored, disable the Rule by unmarking the Check Box. This 

will deactivate and stop collecting event related information.  

List Entry of Watched Functions 
Zend Platform allows you to monitor a list of functions by referencing a text file that includes the 

functions you wish to monitor. Users who must monitor large numbers of functions will find this 

method of defining watched functions a convenient alternative to editing the php.ini file line by line. 

Use the following PHP functions to reference a text file containing the list of functions to monitor. 

The following function is typically used to create a list of functions to watch. It forms part of the 

php.ini file. 

zend_monitor.watch_functions=mysql_connect,mysql_query  

The following function refers zend_monitor.watch_functions to a text file at a specific location. This file 

contains the list of functions to monitor. 

UNIX, Linux, i5/OS and Mac: 

'zend_monitor.watch_functions=@/usr/local/Zend/Platform/lib/watch_funcs.txt'   

'zend_monitor.watch_results=@/usr/local/Zend/Platform/lib/watch_res.txt' 

Windows:  

'zend_monitor.watch_functions="@C:\Program 

Files\Zend\ZendPlatform\lib\watch_funcs.txt"' 

'zend_monitor.watch_results="@C:\Program Files\Zend\ZendPlatform\lib\watch_res.txt"' 

(In Windows the quotes must be present)  

The text file should contain one function name per line.  



Zend Platform for i5/OS User Guide  

78 

Example:  

mysql_connect  

mysql_pconnect  

mysql_query  

mysql_db_query  

mysql_unbuffered_query  

User functions can also be included in the Watch Functions file. Each user function must be added with 

its Class (class::function). 

If necessary, inheritances should also be included in the file as only functions explicitly specified in the 

Watched Functions file are watched. 

Finding Events that Interest You 

Zend Platform provides several ways for viewing Events that occur; each way has different 

advantages and can be used to suit different requirements as follows: 

 Platform | Dashboard | Events at a Glance displays the top five events that occurred, on all 

the servers. Double clicking on an Event in the Console opens its Event Details screen. 

 PHP Intelligence | System Health displays an up-to-date “snapshot” of events monitored by 

Zend Platform and listed by server and Event Type. Selecting a Location (Node) or a specific 

Event Type automatically filters the view to display relevant Events in the Event List. 

 PHP Intelligence | Event List is a filterable display for viewing events in a table according to 

various parameters. Choosing “Change Table Fields” modifies these parameters. This opens a 

selection list of all the possible field options. This window also includes an option to locate 

events by their Event ID.  

 Platform l | Dashboard |Configuration and Management Tools | Event Actions for sending 

events of a certain type to e-mail or URL according to predefined rules. This provides a 

proactive means for sharing information either with parties that need to be informed when 

certain events occur (e-mail) or for integrating event information to other applications (URL).  

For example: a manager may only want to know about Severe PHP errors that indicate some 

or all of the Web application is not working. Setting an Event Action to send event 

information by e-mail means that this manager is immediately informed of the event, as long 

as the e-mail account is accessible  

Note: 

Read more about how your organization can leverage information generated by events in the Tutorial 

– Integrating Existing and Legacy Applications.  



PHP Intelligence 

79 

PHP Intelligence 

PHP Intelligence provides a means for monitoring activity on clusters and servers.  

PHP Intelligence Includes:  

 System Health - provides an up-to-date “snapshot” of events monitored by Zend Platform 

categorized by Host and Event Type.  

 Graphs - display Event relates information in a graphical representation. 

 Event List - a table of events that includes events that occurred during a user-defined time 

frame. The information displayed in the Event List can be filtered by Events From, Event 

Type, Virtual Host, Alert Severity, Status, and Time Filter. You can also find a specific Event 

by ID.  

 Event Triggers - define and/or change triggers for monitoring events on a specific node. From 

this screen you can: configure Event Triggers, view Event Triggers currently defined for the 

node, and filter the view of events displayed in the Define Event Triggers table.  

 Event Actions - apply actions to triggered Events, send to URL or mail or SNMP trap.  

System Health 

The most comprehensive way to view and manage events is through the System Health screen. The 

System Health sub-screen provides an up-to-date “snapshot” of events monitored by Zend Platform. 

Events are displayed in a filterable table, which is updated by manually refreshing the browser 

(Clicking ) or by setting automatic refresh (Zend Central | Preferences). The System 

Health table includes events categorized by location (server/group) and event type. 

 

Figure 34 - System Health Screen 

To view the System Health table: 

1. Go to PHP Intelligence | System Health. 

2. Select the "Filter By" option to filter events displayed in the table. 

Filter options are described in detail below. 

3. Click "Go" to display the System Health table. 



Zend Platform for i5/OS User Guide  

80 

The fields that make up the Event Summary table are as follows:  

 Location - Where the event occurred.  

 PHP - Current PHP events for the selected Host.  

 Server - Overall events related to general performance of server.  

 Database - Database events related to handling of queries.  

 End User - The output site; field includes status information about output site.  

Filtering Table Data  

Zend Platform allows you to filter the event information displayed in the System Health table. There 

are three group options:  

 All - Displays System Health information for all servers (and groups).  

 Ungrouped - Displays System Health information for servers that do not belong to a specific 

group.  

 Server by name - Displays System Health information for the selected server group only.  

 Aggregate servers - Aggregates the servers belonging to the same group into one row. 

To filter the data displayed in the System Health table:  

1. Select the Filter By options—Group and/or Event Name—you wish to apply to the table.  

2. Click "Go" to display the filtered events in the System Health table.  

Aggregation Groups 
Event aggregation / reporting is the process of identifying events that were generated for the same 

reason and can be reported as one event that occurred X times rather that reporting multiple 

occurrences of the same event. 

There are two options for aggregating events: 

1. By Server 

2. By Group 

Aggregation by group happens when several servers are placed in a group that is defined as 

"Aggregated” (Platform | Cluster Management | Manage Groups).  

At the bottom of the System Health table there is a message stating that: 

(*) Events that took place on the server before the server was a member of an aggregated group. 

Aggregation by server happens when identical events are generated on different servers. The same 

event is reported (for each server) separately. This is the default. 

Event information can only be aggregated at the time of the occurrence and for information integrity 

purposes will not be retroactively aggregated. Therefore, events that occur on individual servers 

(ungrouped) before they were grouped will be reported as un-aggregated events.  



PHP Intelligence 

81 

Event List 

The Event List is a filterable table that displays Events that occurred within a user definable period of 

time. 

Information displayed in the Event List can be displayed as follows: 

 Events can be filtered by the following categories: Events From, Event Type, Virtual Host, 

(Event) Severity, Status, and Time Filter.  

 Events can be located in this screen by the event’s ID. 

 Columns in the Event List table can also be customized (Use Change Table Fields). 

Specialized filters can be created and saved using the Manage Filters option. 

Filtering by Virtual Host 

Several servers can be added to a user-defined group and used to filter the display to show Events 

that occurred on a specific selection of servers. 

To define a virtual Host name that will be added to the list in the filter, go to the Virtual Host filter 

field and choose “Selected”. This option opens the Change Virtual Host screen. 

The Manage Filters section allows users to save user defined filter definitions. 

To save user defined filter definitions: 

1. Define the filter settings in the Filter By section. 

2. Select Manage Filters to expand the filter management options. 

3. Enter a user defined name for the filter and press Save to add the new filter. 

4. Use Load Filter each time you want to use a user defined filter. 

5. Use Remove Filter to delete filters from the Load Filter List. 

The filter section of this screen also includes a search field for searching for a specific Event by ID.  

Zend Platform also allows you to change the table fields displayed on-screen. (Click "Change Table 

Fields "and select the fields you want to view from the list). 

Working with the Event List 
To view the Event List: 

1. Go to PHP Intelligence | Event List.  

2. Select the “Filter By” option you wish to apply to the table.  

 Filter operations appear as follows: 

• Events from - Filter Events according to grouping definitions. These definitions list events 

according to where they were generated (in the PHP, Database) or what type of event (slow 

response, error). The values are: All, Bandwidth-Other, Web server-Other, PHP-Slow 

Response, PHP-Error, PHP-Other, Database-Slow Response, Database-Error 

• Event Types - Filter Events displayed in the table according to event type. The values are: 

All, Slow Script Execution (absolute), Slow Script Execution (relative), PHP Error, Function 

Error, Slow Function Execution, Excess Memory Usage (absolute), Excess Memory Usage 

(relative), Database Error, Slow Query Execution, Inconsistent Output Size, Load Average, 

Custom Events. 

• Virtual Hosts - View Event information for either All hosts or selected hosts. Click Selected to 

open the Change Virtual Host Selection dialog box. All, Selected or predefined user 

selections. 



Zend Platform for i5/OS User Guide  

82 

• Severity - Filters Event information according to severity. The values are: All, Moderate, 

Severe 

• Status - Filters information displayed in the Event List according to the Event’s handling 

status. The values are: All, Opened, Closed, Ignored 

• Time Filter - Filters information displayed in the Event List according to a user-defined time 

frame. The values are: All, Past Hour, Past Day, Past Week, Past Month 

• Find Event by ID - Finds (and displays) an event with a specific ID number. (By entering an 

event id and clicking "Find"f). The values are: Sequential numbers that were assigned to 

Event Details. 

3. Click Go to display filtered events in the Event List table.  

 

Figure 35 - Event List 

  



PHP Intelligence 

83 

The Following list describes the fields that make up the Event List. 

 ID - Sequential number assigned to an event. 

 Event Type - A descriptive name assigned to the event. 

 Count - Number of occurrences of the event. 

 First Occurrence - Date and time of event’s original occurrence. 

 Last Occurrence - Date and time of event’s most recent occurrence. 

 Location - The name of the server or Aggregated Group where the event occurred. 

 Vhost - Name of the Vhost where the event occurred. 

 URL - The URL where the event occurred. 

 Source File - Path to PHP source file. 

 Line - Line in code where event occurred. 

 Aggregation Hint - The hint in the code that caused the event to be aggregated. 

 Function Name - Name of PHP function where event occurred. 

 Status - Status of the event. 

 Severity - Severity of the event. 

The following actions can be performed on the events in the Events Table: 

To apply one of these actions to an event/events select the event by checking the check-box next to 

the events: 

 Delete Selected – Deletes the Events form the database.  

 Ignore Selected – A new Event Details screen will not be created for this specific - occurrence 

Additional occurrences of this event will be added to the original Event's details. 

 Close Selected – Changes the status of the event to "Closed" and preserves the Event in the 

Database. If the same event occurs again a new Event Details screen will be created. 

 Preserve Selected – Preserve the selected event from being deleted during Database 

cleanups. 

 Reopen Selected - Changes the status of ignored or closed events to "Open". 

Note:  

The default value for database cleanup is 7 days.  

Depending on the operating system database cleanup settings can be changed in: 

/usr/local/Zend/Platform/etc/php-embed.ini or<install_dir>\etc\php-embed.ini, by setting a different 

value for the parameter zend_monitor.event_lifetime 



Zend Platform for i5/OS User Guide  

84 

Change Virtual Host 
Several servers can be added to a user defined group and used to filter the Event List to show Events 

and Alerts that occurred on a specific selection of servers. 

To create a virtual Host: 

1. Choose the servers from the tree. 

2. Name the current selection. 

3. Click "Save". 

To view a Virtual Host’s settings: 

1. Select a Virtual Host from the Load Selection field. 

2. Click "Load". 

Virtual Hosts can be deleted by clicking "Remove Selection". 

Event Details 

Understanding Event Details 

Event Details are generated in accordance to Event Triggers. Event Details are a diagnostic tool that 

provides a complete audit trail and options for investigating and resolving events. 

Event Details are viewed in several ways. The regular way of viewing events is from Zend Platform. 

Events can be configured to be sent by e-mail recipients or to a URL (in XML format). However, Event 

Details always include the same information regardless of the viewed output (Regular Event Details, 

XML or e-mail).  

 

Figure 36 - A PHP Event Details Screen 



PHP Intelligence 

85 

 Event Details include five sections: 

1. General Information 

2. Event Occurrence Info 

3. Zend Studio Diagnostics 

4. Event Context 

i. Function Data 

ii. Variables 

iii. Backtrace 

iv. Included Files 

v. Show Source Code 

5. Event Administration 

The information included in Event Details varies according to event type. For example: PHP Error 

Event Details include different information than a Slow Script Execution Event Details, simply because 

these events require different information to perform diagnostic analysis.  

For example: A PHP Error will include in the General Information, the error’s text and in the Event 

Context, the Function’s Data. However, in a Slow Script Execution Error there is no need for the error 

text or the function’s data and there will be information on how long the script ran for, included files 

and the load average at the time of the event. 

Note: 

If there is not relevant data to display in an Event Details screen, the section will not be included 

rather than appearing empty. 

General Information 

The general information section of the Event Details provides basic information about the event 

(depending on the event’s type) as follows:  

 

Figure 37 - Event Details - General Information 

 Title - The top of the Event Details, displays the event that generated the Error and the Event 

ID (Error #). The Event ID can later be used, to locate the event in the Event List or the 

Console in the filter's Find section. 

 Severity Level - An additional notification is added to severe events. 

 Event Status - The Status of the event is indicated for all statuses except Opened. 

 Requested URL - The requested URL 

 Main Filename - The URL’s main file 

 Source Info - The path to the Source File and line in the code that triggered the event.  



Zend Platform for i5/OS User Guide  

86 

Note: 

Especially with code related errors, this information can provide an immediate indication to the source 

of the error in the code. 

Trigger Value The script’s trigger value (runtime,output size,memory consumption etc.) 

 CPU Load - The CPU load when the event occurred. 

 Zend Error/ Error Description - Shows the event’s error text (for code related errors) and the 

$type of Custom Events  

 Aggregate Hint - Shows the Aggregate Hint for this event  

 Associate Zend Error - Adds a link to an associated Zend error event. 

Event Occurrence Info 
To prevent an event from being continually reported for the same or similar event, PHP Intelligence 

enforces Aggregation Rules. These rules are based on a set of predetermined algorithms that 

determine which events are identical or are similar, to the extent they can be reported as a single 

Event. Aggregation Rules are also aware of events that occur on nodes belonging to a cluster – 

Groups and not just occurrences on a single server (node).  

Aggregation information is displayed in event details to identify the number of times the event 

occurred and in case of Groups the information is expanded to include the servers on which the event 

occurred and the number of occurrences. 

 

Figure 38 - Event Details - Event Occurrence Info  

The Event Occurrence Info section shows, the total number of occurrences, the time and date of the 

first and last occurrence and the first server (and vhost) on which the event occurred. 

In cases where an event occurred on several servers belonging to the same group, an additional 

expandable list is added. This list displays occurrences per server, i.e. the server’s name, and total 

number of times the event occurred on the server. 

Zend Studio Diagnostics 
The Zend Studio Diagnostics section shows the advanced diagnostic options that can be performed on 

the event’s data. 

These diagnostic options reconstruct the precise conditions that generated the event by recreating the 

request with the same parameters that were in the original request (Information such as: 

GET/POST/COOKIE/etc.). 

Note: 

The recreation process will not create an additional event. 

 

Figure 39 - Event Details - Event Diagnostic Options  



PHP Intelligence 

87 

The diagnostic options that can be applied to event information are as follows: 

 Test URL - Loads the exact same URL from the event with the exact same parameters 

(GET/POST/COOKIE/HTTP HEADERS/etc.) and shows the script’s output in the browser. 

Note: 

The Test URL option does not require the Integration with Zend Studio.  

 Debug URL - Initiates a Debug session of this URL in the Zend Studio. 

 Profile URL - Profiles the URL, using the Zend Studio Profiler with the same parameters 

(GET/POST/COOKIE/HTTP HEADERS/etc). 

 Show Source Code - Opens the file where the event occurred in Zend Studio. This option 

provides a means for editing files and implementing changes to multiple servers using Zend 

Studio. 

Important:  Debug URL, Profile URL and Show Source Code can be activated when the following 

conditions are met: 

1. Zend Debugger is installed on the server where the event occurred. 

2. Zend Studio (ZDE) is open. 

3. The Platform Administration preferences (Zend Central | Preferences) are configured to the 

correct port (The port on which Zend Studio is listening), the Zend Studio IP is correct (the 

exact IP of the computer where the Zend Studio resides), and the Debugger allows a debug 

session from Platform Administration (by going to: Zend Central | Configure PHP Settings | 

Zend | Zend Debugger and verifying the correct IP/S in the zend_debugger.allow_hosts 

directive).The Server settings are configured to the correct Host in Zend Core (See the Zend 

Core User Guide for more information). 

Event Context 
Event context includes relevant information available at the time of the occurrence. This information 

varies according to the type of event generated. 

There are four main Event context categories:  

1. Function Data 

2. Variables 

3. Backtrace  

4. Included Files 

 

Figure 40 - Event Details - Event Context  



Zend Platform for i5/OS User Guide  

88 

Function Data 

Function Data is only added to function related Event Details. This addition shows the function’s name 

and parameters at the time the event occurred. 

The function always appears as a link. This link directs to the function’s description in the online PHP 

manual at: http://www.zend.com/manual. 

Note: 

The link to the PHP manual also appears for user-defined functions. These functions naturally, will not 

be found in the PHP manual however, it is a good indication as to which functions are PHP functions 

and which are user-defined. 

Variables 

The information included in the Variables section, includes all variables data saved when the event 

occurred, such as: GET, POST, COOKIE, SERVER, etc. 

The GET, POST, COOKIE and SERVER sections will always be displayed even if they are empty. This 

indicates that there was no available data at the time the event occurred. 

Users may choose to change the type of information collected and displayed in an event (Change 

Event Details).  

Backtrace 

Backtrace only appears in function related events. The listed functions are the functions that lead to 

the actual function (occurrence) that triggered the error.  

Functions are listed in chronological order from the most recent to the first function that was called. 

There are two options for viewing Backtraced functions, in a pop-up screen or in Zend 

Studio. 

  - Shows the function call in a pop-up screen. 

  - Shows the function call in Zend Studio. 

Included Files 

The Included Files section only appears in slow script error events. The files listed are all the files that 

are included in the PHP script that caused the error to occur. 

Show Source Code 
Shows event data in the Event details in the form of an expandable text field. This option opens the 

file in the section of code where the event occurred. 

To view the source code in Event Details: 

Click Show Source Code to expand the text area.  



PHP Intelligence 

89 

Event Administration 
The Event Administration section includes all the actions that can be applied to an event see 

Controlling Information Displayed in an Event, to learn how to disable these options for certain users. 

 

Figure 41 - Event Details - Event Administration Actions 

The applicable actions (Buttons) are as follows: 

 Preserve Event - Keeps the event in the database even during database cleanups. 

 Delete Event - Deletes the event (i.e., removes the event entirely from the database.) 

 Ignore Event - Ignores future instances of this event (i.e., changes the event status to 

ignore). Therefore, if the same event occurs again, Platform will not open a new event. 

 Close Event - Closes the event (i.e., changes the event status to closed). Therefore, if this 

event occurs again, Platform will open a new event. 

 Reopen Event -Changes the event’s status from closed to open. 

Controlling Information Displayed in an Event 
Zend Platform’s User Management settings (Zend Central | User Management), can be utilized to set 

restrictions per User Group. These restrictions can control permissions to view event information and 

prevent certain User Groups from changing Event Details status. 

The following restrictions can be applied to Event Details information:  

 Delete an event 

 Ignore an event 

 Close an event 

 Reopen an event 

 See the event internal data in the Event Details 

 See the event source code in the Event Details 

 Use the Zend Studio Diagnostics in the Event Details 

These limitations can prove to be especially useful for the organization. For example: when working in 

collaboration with external organizations that should not be permitted to view information such as the 

source code.  

Another example of the Event Details restrictions is seen when implementing development lifecycle 

processes that require that certain groups be limited to the actions that they can do with an event 

such as closing or reopening. 

Note: 

To find out how to create a User Group, go to: “Configuring Users and User Permissions. 



Zend Platform for i5/OS User Guide  

90 

Change Event Details 

Variables 

The information included in the Variables section, includes all variables data saved when the event 

occurred, such as: GET, POST, COOKIE, SERVER, etc. 

The GET, POST, COOKIE and SERVER sections will always be displayed even if they are empty. This 

indicates that there was no available data at the time the event occurred. 

Users may choose to change the type of information collected and displayed in an event at the time of 

the occurrence. 

To define the type of variables data that will be displayed in Event Details: 

1. Go to: Platform | Dashboard | Configure PHP Settings and locate the function 

zend_monitor.report_variables_data from the tree under: Directives | Extensions | Zend 

Platform. 

2. Select the Variables types that you want displayed in Event Details by selecting the check 

box to the left of each variable and clicking "Save".  

The new settings will be applied as soon as the Web Server is restarted. 

Note: 

Changes applied to the Event Details will take affect after the Server is restarted. Events that occurred 

before the changes will not be affected. 

Customizing Events 

Zend Platform provides several ways for customizing events in order to facilitate different 

requirements. 

 Custom events – for generating a User Defined event that is not based on specific PHP 

Intelligence, Event Triggers. 

 Event Callbacks – for adding user defined information to Event Details. 

 Aggregation API – for setting different events to be aggregated with other events. 

Custom Events 

Custom events are a unique type of event that is provided for Zend Platform users in order to initiate 

events in their scripts. This type of event is different than other event types in that it allows 

controlling event generation as opposed to the other events that are triggered by a certain 

occurrence.  

Custom events are used to generate an event whenever the API function monitor_custom_event() is 

called from the PHP script. 

Description:  

This event type enables the generation of an event on occurrences that are not necessarily built-in 

Zend Platform events (error and performance issues). Custom events are used whenever you decide 

that it is significant to generate an event in a certain situation. Each event type is given a name for 

easy identification ($type). 

Function Usage: 

void monitor_custom_event(string $class, string $text[, integer $severe, mixed $user_data]) 



PHP Intelligence 

91 

Parameters: 

 $class – helps to define several types of custom events. This description will be showed in the 

Event List and in the Event Details. 

 $text - error text used to describe the reason for the event. This text will appear in the Event 

Details. 

 $severe - the severity level of the triggered event, default value is Severe.  

 $user_data - adds a PHP variable that will be viewed in the Event Details (in Event Context-> 

Variables->User Defined). This forms the stored Event Context (similar to the information 

obtained in a PHP error event). 

 Aggregation takes place for these events when, two events occur in the same place and have the 

same $class $text $sever(ity) 

When viewing these events in PHP Intelligence | Event List, they can be filtered by the Custom Events 

category.  

Note:  

Event Actions defined for these events should be set to “send to URL” rather than “sending by e-mail” 

as there is only one definition for these events and Event Details sent to a URL can be easily 

forwarded elsewhere. This is to prevent the overloading of e-mail. If we use the e-mail action, for 

every custom event, e-mail will be sent, and there can be many classes of custom events. However if 

the URL action is used, a script can be used to identify the event’s class and different behaviors can be 

implemented according to class.  

(To find out how to leverage Event Details information sent to URLs go to: Tutorial - Integrating 

Existing and Legacy Applications) 

Event Callbacks 

The event callback mechanism is used for viewing additional information about local variables in order 

to investigate what happened when an event was generated. The additional information is displayed in 

the Event Details.  

Event Callbacks are created by extending information already provided in Event Details to provide an 

audit trail for problem conclusion.  

Register and Un-register User Event Handlers  

The event callback mechanism uses the following API functions: 

 register_event_handler 

 unregister_event_handler 

Register Event Handler  

To register a user function as an event handler, the following API can be implemented: 

register_event_handler($event_handler_func 

[[,$handler_register_name],$event_type_mask])  



Zend Platform for i5/OS User Guide  

92 

Parameters: 

 $event_handler_func  - The first argument is a callback function that will be called when the 

event is triggered. Object methods may also be statically invoked using this function, by 

passing the array ($objectname, $methodname) to the function parameter.  

 $handler_register_name - The second argument is optional and represents the name under 

which the function is registered. If no name is specified, the function will be registered under 

its own name.  

 $event_type_mask - The third  parameter is an optional mask of event types on which the 

handler should called. The default setting is MONITOR_EVENT_ALL.  

When a monitor event is triggered, all the user event handlers are called and the return value from 

the handler is saved in an array keyed by the name under which the event handler was registered. 

The event handlers’ results array is saved in the script_runs table. 

Notes:  

The first parameter is the name of the called function and it has to be a user-defined function. Built-in 

functions will not work with this API. 

This function can get as a parameter the event type by which it was called. 

If there is a PHP function register_error_handler in the JavaScript, events will not be reported. To 

report events call the function monitor_pass_events in the error handler. 

Global Events should not be changed under any circumstances as they may produce unpredictable 

results. 

Un-register Event Handler 

The un-register event handler allows you to un-register an event handler. The API returns false if it 

cannot find a handler registered under the supplied name.  

unregister_event_handler($register_event_handler)  

Note: 

Do not add the unregister_event_handler  function to the end of scripts if you need to generate 

memory and script execution Events. These event types generate the event only after the script is 

executed and if unregister_event_handler is added it will stop the event from being generated. 

The event types that should not include unregister_event_handler are as follows: 

 Slow Script Execution Absolute  

 Slow Script Execution Relative 

 Inconsistent Output Size 

Aggregate Hints 

“monitor_set_aggregation_hint (page name)” 

 

This API is a global variable that can be set anywhere and in any hierarchy. The purpose of this API is 

to incorporate locations of occurrences in the script.  

This API is used when there are events that require the location in the script for diagnosing the reason 

behind the event occurring.  



PHP Intelligence 

93 

For example: 

Global Events require the application that generated the event. Adding the Hint API can assist in the 

identification process. 

Event Aggregation Rules 

Event aggregation rules determine which events are aggregated into a single Event Detail.  

There are four types of checks depending on the event type: 

1. Database Error 

2. Zend Error (PHP Error) 

3. Function Error 

4. Query Error 

The Collector checks to see if these events occurred in the same source file based on the Line, 

Function and Hint. This is why it is important to used Hints if this level of separation is necessary. 

Note: 

To read more about the event aggregation mechanism go to: Appendix D - Event Aggregation 

Mechanism. 

Database Maintenance 

Once the cause of the event has been fixed, we can decide what to do with the event: Preserve, 

Ignore or Delete. If no actions are done to an event, it will be automatically deleted from the 

database.  

Apart from closing events, other additional advantages can be obtained by customizing user 

permissions. Granting different users separate authorizations, by configuring different user 

permissions can facilitate different organizational requirements such as enforcing responsibilities and 

work structures. For example: by providing “Read Only” authorization to people who only need to see 

event details and granting authorization to Close events only to those who should close events (such 

as managers or team leaders) we can create and maintain a structured working environment.  

The Event List provides four options for handling events in the system:  

 Close Event - Closes the event (i.e., changes the event status to closed). Therefore, if this 

event occurs again, Platform will open a new event.  

 Ignore Event - Ignores future instances of this event (i.e., changes the event status to 

ignore). Therefore, if the same event occurs again, Platform will not open a new event.  

 Delete Event - Deletes the event (i.e., removes the event entirely from the database.)  

 Manual Override - Users can also manually change the status of an event by clicking on the 

event in the Event List and changing its status. This method is helpful, for example, if you 

want to "un-ignore" an ignored event and restore it to the main screen. 



Zend Platform for i5/OS User Guide  

94 

Graphs 

Zend Platform includes an option to display event related information in a graphical representation 

(Pie and Bar graphs). 

Graph Behavior 
The Zend Platform graphs display general statistics about event segmentation. All graphs display tool-

tips with a description of the results displayed in the graph. 

Graphs are viewed from two different locations: 

1. Platform | Dashboard (only Pie Charts) 

2. PHP Intelligence | Graphs 

The following lists the available list of graphs, their display type and other additional information: 

 Top 5 Events by Aggregation Hints  - Pie Chart  

 Top 5 Events by Event Type - Pie Chart, Drill down to view a list of events relevant to the 

selected part of the chart 

 Top 5 Events by Location - Pie Chart, Drill down to view a list of events relevant to the 

selected part of the chart. 

An asterisk (*) next to the name of a server indicates that the statistics contain numbers 

about events that took place on the server before the server was a member of an aggregated 

group. 

 Top 5 Events by Script -  Pie Chart  

 *Total Events by Hour -  Bar Graph  

 *Total Events by Month -  Bar Graph 

 *Total Events by Weekday -  Bar Graph  

* These graphs can only viewed from PHP Intelligence | Graphs 

 

Figure 42 - Bar Graph and Pie Chart 



PHP Intelligence 

95 

Generating Graphs 

Regular pie charts do not require any additional actions in order to generate a graph. However, bar 

charts display information based on a specific parameter therefore, a parameter has to be selected 

and defined in order to generate a Bar Chart representation.  

To generate a Bar Chart: 

1. Go to PHP Intelligence | Graphs.  

The Graphs screen opens. 

2. Select one of the bar chart options: Total Events by Hour, Total Events by Month, and Total 

Events by Weekday. 

The display changes to add input fields to select the range for the Graphs. 

3. Define the range and click “Generate Graph”. 

The graph will be generated and displayed on screen. 

This completes the PHP Intelligence chapter of the User Guide.  

In this section we have described the Problem Resolution Lifecycle and how it can be implemented 

in an organization’s environment. 

 



Zend Platform for i5/OS User Guide  

96 

Performance 

IN THIS CHAPTER… 

OVERVIEW  

PERFORMANCE LIFECYCLE  

IMPLEMENTING THE PERFORMANCE LIFECYCLE  

EVENT TRIGGER SETTINGS AND ANALYSIS  

PERFORMANCE OPTIMIZATION TOOLS  

TUNING  

ACCELERATOR PERFORMANCE LEVEL DESCRIPTIONS  

TUNING ZEND PLATFORM FOR OPTIMAL PERFORMANCE ON I5 OS 

The Zend Performance module provides a collection of comprehensive tools for enhancing PHP Web 

applications and Server performance in Enterprises.  

Using Performance Provides: 

 Increased server throughput, with less hardware 

 Improved user-experience, with faster response time and download time 

 Reduced stress on production database servers and http servers 

 Reduced costs on new hardware purchases and IT maintenance operations 

 Better utilization of existing hardware resources and capacity 

Overview  

The Zend Performance module consists of several components for providing server performance 

optimization: 

 Performance Tests 

 Code Optimization 

 Dynamic Content Caching 

 Code Acceleration 

 File Compression  

Code Optimization 

Code optimization begins from the first moment Zend Platform is installed. The Zend optimization 

component performs several passes, each pass searches for specific points in the PHP code that are 

known to have a negative affect on performance and changes them for faster execution. 



Performance 

97 

Dynamic Content Caching 

Dynamic Content Caching dramatically reduces the number of times your server must run complex 

scripts, execute resource-intensive database queries, or call external web services. 

How it works: Server-side caching eliminates the need to return to databases, duplicate processes or 

re-build a web page for each page access. Cached versions of any URL can be maintained for any 

amount of time that you determine. Fully configurable parameters determine what to cache and based 

on which conditions. No code-level modifications are required. Moreover, you can use the PHP API for 

partial and conditional caching of parts of script functionality. 

Code Acceleration 

Code Acceleration begins from the first moment Zend Platform is installed. The Zend acceleration 

component performs a pre-compilation of your PHP scripts, eliminating the lag time and interpreter 

time involved in script parsing. During compilation, the code is also optimized, resulting in even faster 

execution time. 

How it works: Server-side pre-compilation generates persistent bytecode. Modified scripts are 

automatically detected. Compiled scripts are optimized using advanced code optimization methods. 

File Compression  

File Compression increases the end-user download speed and decreases the workload on your http 

server. Better than any other compression option due to integration with Dynamic Content Caching 

eliminating the time it takes to run the compression. 

How it works: Specific browser capabilities are auto-detected. If browser supports gzip format, the 

results are compressed prior to returning to the user. Both the original and the compressed version 

are cached and reused, depending on browser capability and cache lifetime. 



Zend Platform for i5/OS User Guide  

98 

Performance Lifecycle  

Maintaining Web applications at optimal performance levels is a necessary requirement for ensuring 

customer satisfaction and organizational efficiency. Zend Platform’s Performance module provides 

tools for optimizing Web application performance by employing a detailed performance enhancement 

method – the Performance Lifecycle. The Performance Lifecycle is a process of calibrating Zend 

Platform to provide an optimal performance boost to business critical Web applications.  

Deploying Zend Platform in organizations will improve the overall performance of Web 

applications by: 

 Enhancing code and download performance. 

 Employing full and partial page caching capabilities. 

 Preserving memory consumption through file compression.  

The use of Zend Platform Performance tools in development and production environments provides a 

means for testing and maintaining Web application performance. 

The following illustration displays the three stages of the Performance Lifecycle.  

 

Figure 43 - Performance Lifecycle 

The Zend Platform Performance Lifecycle is an iterative cycle for analyzing Web application 

performance. The purpose of this cycle is to identify areas that require Zend Platform calibration and 

areas that require PHP code optimization.  

The Performance Lifecycle Baselines (stages) are as follows: 

Zend Baseline 

The first Baseline is the Zend Baseline. This baseline measures performance based on Zend Platform’s 

default parameters that are immediately activated upon installation. The default parameters are, 

Event Trigger settings, Code Optimization and Code Acceleration. Once Zend Platform is installed, 

these components automatically begin to work on the PHP code. The result is an immediate 

improvement to the Web application and initial PHP Intelligence event generation (based on default 

Event Trigger settings). 



Performance 

99 

The purpose of the Zend Baseline is to evaluate overall performance in relation to the Zend Platform 

defaults. This information is used as an initial starting point for subsequent calibration and 

optimizations. 

Note: 

In the Zend Baseline stage, it is common to experience abnormal event generation behavior (too 

many or too little events generated). This is a normal part of the initial calibration stage, necessary for 

identifying how to adjust performance settings to obtain optimal Web application performance.  

Site Baseline 

The second Baseline is the actual calibration process. Based on information collected and observed in 

the first Baseline, the performance settings can be calibrated to suit each organization’s specific Web 

application. The Site Baseline enables one to obtain insight into the overall performance of the Web 

application. Once the Site Baseline is established by configuring Event Triggers these events can be 

further analyzed to evaluate the mode of action required to optimize the Web application’s 

performance. At this point it is recommended to perform a Site Analysis to benchmark the Web 

application. The Benchmark information provides an initial indication of the Web application’s current 

performance before applying the additional performance tools. This will provide a point of comparison 

to view improvements that occur after subsequent optimization is done with Zend Platform. 

After the Site analysis, the PHP code can be optimized. Optimization is obtained by implementing 

performance tools to areas in the PHP that exceed the Site Baseline settings (still generate events).   

There are four possible choices for adding performance features to PHP code: 

1. Full page caching 

2. Partial page caching 

3. Compression 

4. Blacklist files or directories 

Completing optimization of the Site Baseline brings us to the Optimized Baseline. 

Optimized Baseline  

The Optimized Baseline represents the stage where the Web application is optimized and Zend 

Platform is calibrated with the Web application. From this stable stage all that is left to do is to let 

Zend Platform perform regular Production Monitoring. 

Note: 

When the Web application is re-deployed or changes are made, this process should be repeated from 

the Site Baseline stage in order to reestablish the Optimized Baseline.  

 

Now that we have established what the performance lifecycle does and the tools it comprises. The 

next step is to see how to implement the performance lifecycle. At the end of this guide you will find 

a Performance Lifecycle Check List that details the steps to establishing an Optimized Baseline for 

Web applications. The next chapter “Implementing the Performance Lifecycle“ details each of these 

steps. 

 



Zend Platform for i5/OS User Guide  

100 

Implementing the Performance Lifecycle 

The following section provides a detailed instructional overview of performance optimization features 

and components for implementing the Performance Lifecycle. 

Benchmark - Site Analysis 
Site Analysis enables to obtain insight into the overall performance of Web applications. Benchmark 

information provides an initial indication of the Web application’s current performance. This 

information can be used as a starting point for observing the performance boost gained applying the 

performance tools. Benchmarking measures Web server performance and durability. 

In Zend Platform, Benchmarking is achieved through the Testing screen (Performance | Testing). 

This screen includes three options.  

 Test URL – tests a single script, running Performance and Compression tests at the same 

time. The test results indicate the script improvements achieved by Code Acceleration, 

Dynamic Content Caching and File Compression.  

 Analyze Site – tests performance for the entire Web application, running the Performance 

test separate from the Compression test. The test results indicate the overall script 

improvements achieved by Code Acceleration, Dynamic Content Caching and File 

Compression and the popularity of each file.  

 Test Download – tests the efficiency of the Zend Download Server. This test is addressed in 

the Enterprise Server chapter titled “Zend Download Server”. 

The above-mentioned tests analyze an entire site’s performance or monitor a single script. The test 

results can be further used outside Zend Platform as they can be printed or sent by e-mail.  

Notes:  

Since testing may take a while to run, it is suggested that you choose only the most recently added 

files. You may select as many files as you wish; nonetheless this will increase the duration of the test.  

Prior to running the Compression Test and in order to ensure accurate results, you may want to add 

query strings to the script path entries.  

When running Performance Tests, query strings can only be added to cached scripts, to check for 

performance gain.  

Testing 

The Testing workspace shows you the improvement achieved in performance by Zend Platform 

Performance. 

In addition, it identifies files that are prime candidates to be cached-a convenient feature during initial 

configuration. 



Performance 

101 

There are three tests, which you can run:  

 Test URL - Tests a single script, running both the Performance and the Compression tests at 

the same time. The test results indicate the script improvements achieved by Code 

Acceleration, Dynamic Content Caching and File Compression.  

 Test Download - Tests the efficiency of the Enterprise Server feature, Zend Download Server.  

 Analyze Site - Tests performance for the entire site by running the Performance test 

separately from the Compression test. The test results indicate the overall script 

improvements achieved by Code Acceleration, Dynamic Content Caching and File 

Compression and the popularity of each file.   

All test results can be sent by e-mail to view or archive performance information. 

Test URL 
Test URL, tests a single script, running Performance and Compression tests at the same time. The test 

results indicate the script improvements achieved by Code Acceleration, Dynamic Content Caching and 

File Compression.  

To test a URL (Benchmark Web applications): 

1. Go to: Performance | Testing and select the Test URL tab.  

2. Click "Test URL "and type the full path of the script. To select a previously tested URL, click 

"Show History". By default, URLs are tested using GET variables defined in the query string. 

3. Click "Add variables to URL" to add the variable Name and Value to test URLs using specific 

SESSION or COOKIE variables. Add the User Name and Password to test URLs that are 

restricted by HTTP Authentication.  

4. To delete any variable from the list, click "Delete" next to the variable. 

5. To determine a test's duration, specify the time in seconds (per script) in the "Duration of 

test" box.  

6. Press Run. 

Note:  

To add specific SESSION variables to the test, make sure that your PHP is configured correctly to work 

with sessions. For example: if you use 'files' as your session.save_handler, confirm that the 

session.save_path is a valid path. If you use 'user' as your session.save_handler, you must prepend 

the file containing the user-level session storage functions. 

Test Results  

The Test Results screen depicts the Dynamic Content Caching Results, the Code Acceleration Results, 

and the File Compression Results: 

 Dynamic Content Caching Results compare between the Base script and the script after it has 

been cached, and calculates the total performance improvement accomplished due to 

caching.  

 Code Acceleration Results display the performance gain. If the script is cached, acceleration 

does not improve performance acceleration is therefore not necessary 

 File Compression Results compare between the original file size and the compressed file size 

and calculates the savings in bytes and the improvement in percentage.  



Zend Platform for i5/OS User Guide  

102 

Additional Variables 
By default, URLs are tested using GET variables defined in the query string.  

 To test URLs using a specific SESSION or COOKIE variable, add the variable Name and Value.  

 To test URLs restricted by HTTP Authentication, add the User Name and Password. 

Analyze Site (Benchmark) 

Benchmark Web Applications: 

To Benchmark Web Applications:  

Go to Performance | Testing and select the Test URL Tab.  

To test a script, follow these steps:  

1. Click Test URL and type the full path of the script. To select a previously tested URL, click 

Show History. By default, URLs are tested using GET variables defined in the query string. 

2. Click "Add variables to URL" to add the variable Name and Value to test URLs using specific 

SESSION or COOKIE variables. Add the User Name and Password to test URLs that are 

restricted by HTTP Authentication.  

3. To delete any variable from the list, click next the variable (To add specific SESSION 

variables to the test, make sure that your PHP is configured correctly to work with sessions. 

For example: if you use 'files' as your session.save_handler, confirm that the 

session.save_path is a valid path. If you use 'user' as your session.save_handler, you must 

prepend the file containing the user-level session storage functions). 

4. To determine the Duration of test, specify the time in seconds (per script) in the Duration of 

test box.  

5. Press Run. 

Test Results  

The Test Results screen depicts the Dynamic Content Caching Results, the Code Acceleration Results, 

and the File Compression Results.  

 The Dynamic Content Caching Results compares between the Base script and the script after 

it has been cached, and calculates the total performance improvement accomplished due to 

caching.  

 The Code Acceleration Results displays the performance gain. If the script is cached, 

acceleration does not improve performance acceleration is therefore not necessary 

 The File Compression Results compares between the original file size and the compressed file 

size and calculates the savings in bytes and the improvement in percentage.  

When running the Analyze Site test, you can choose to run the Performance test separately from the 

Compression test:  

 Performance Test results - indicate the average improvement achieved by Code Acceleration, 

Content Caching and the average overall improvement achieved;  

 Compression Test results - present the improvement accomplished due to the File 

Compression.  



Performance 

103 

To Analyze a Site: 

Go to: Performance | Testing and select the Analyze Site tab.  

The following options are presented in the tab: 

 Run Performance Test 

 Run Compression Test 

 Show Last Performance Test Report 

 Show Last Compression Test Report 

Performance Test 

1. Select the number of scripts to test and press Next. 

2. The following screen lists the scripts selected. To change the number of the scripts to be 

tested, click "Previous". To continue, click "Next" 

3. The Site Analysis Report appears indicating the Performance Gain and Popularity Rank of the 

scripts.  

N/A Test Results  

N/A test results can be caused by various reasons.  

To check the cause of a N/A test result: 

Place the cursor on top of the N/A and the cause of the problem appears in a Tooltip. 

N/A can be caused when a script cannot be accessed or if the access time to the script is greater than 

the test duration (3 sec). If this is the case, test the script separately using the Test URL option.  

After analyzing the test results you may wish to modify the caching status of the scripts and re-run 

the test.  

To re-run the test: 

Click "Edit" next to the script you wish to modify, change the caching conditions and save the new 

settings. If the message appears, the test results are incorrect since the changes you made did not 

take effect. In this case, restart the server and simulate a typical user session to get valid results. 

Compression Test 

The Compression test analyzes download time improvement of the popular scripts as the result of 

Compression.  

1. Click "Run Compression Test". 

2. Choose the number of scripts to test and click "Next".  

3. To ensure accurate results for the scripts, add query strings in the Script Path entries. For 

example: /site/example.php?var1=value1&var2=value2).  

4. Click "Run" to run the test.  

The Site Analysis Report screen details the results for the compression test. The report shows the 

original script size, along with the compressed size and the compression improvement rate. The actual 

compression functionality is not affected. 

Note:  

If one or more scripts failed the test, an indicative message appears on the screen. The Compression 

Test failed since Platform Performance cannot resolve the URL from some script paths or the URL 

cannot be accessed. Note that scripts defined on a virtual host or a symbolic link can cause the test to 

fail.  



Zend Platform for i5/OS User Guide  

104 

Show Last Test Reports  

The last Test Results summary is displayed in the Testing environment.  

To display last Test Reports, click the Show Last Performance Test Report or Show Last Compression 

Test Report button. The displayed Test Report will be updated as soon as you run another test. 

Note: 

Test results can also be sent by e-mail and stored outside Zend Platform 

Event Trigger Settings and Analysis 

Initially Zend Platform Event settings are based on predefined default parameters. As such these 

settings require calibration to suit specific environments. The anticipated results are Event Details 

generated based on default triggers. Running Zend Platform for the first time will most probably cause 

abnormal event generation behavior (too many or too little events).  

This behavior is attributed to two causes: 

1. The Default triggers need to be calibrated. 

2. The PHP needs to undergo additional performance Optimization. 

Before making any adjustments to the PHP code that may turn out to be unnecessary, first calibrate 

PHP Intelligence.  

Calibrating Event Triggers for Performance Optimization 
Calibrating PHP Intelligence is the process of adjusting Event Triggers to accommodate a specific Web 

application. 

Event Triggers are calibrated from PHP Intelligence | Event Triggers.  

When calibrating Event Triggers for performance optimization, the following performance-related 

event types should be addressed: 

 Slow Script Execution (Absolute and Relative) – generates an event when script execution 

exceeds defined limits  

 Slow Query Execution – generates an event whenever database related functions exceed the 

threshold defined in the event. 

 Slow Function Execution - Generates an event when a specified PHP function’s execution time 

exceeds the threshold defined in the event. 

 Excess Memory Usage (Absolute and Relative) - Generates an event when memory use for 

PHP script execution is above or below average. 

These event types are performance related indicators. Each one of these events should be configured 

to generate an Event according to your environments performance requirements. Events generated 

following calibration indicate that certain areas of the application are not performing according to your 

requirements and need further investigation. 

Investigating Performance Related Events 
Performance related events are investigated when events continue to occur after initial calibration. 

The contents of Event Details provide in-depth diagnostic information and tools for investigating the 

occurrence. A generated event does not necessarily indicate a problem with the PHP Code, it can also 

indicate that the Event Trigger settings need to be adjusted or the PHP code should be reevaluated. 



Performance 

105 

The most effective performance diagnostic tool is the Zend Studio Profiler. The Zend Studio Profiler is 

a Zend Studio component that can be employed on Event Detail information through Zend Platform’s 

integration with Zend Studio. 

Profiling PHP Code with Zend Studio 

Running the Zend Studio Profiler on PHP code provides time-related snapshot of the Code’s overall 

performance. Profiling uses the Zend Studio IDE tools, to analyze PHP code. When profiling, the 

event’s information is transferred from Zend Platform to Zend Studio. This information includes all the 

information necessary to precisely recreate of the actual occurrence that generated the event. The 

Zend Studio Profiler is so accurate that this process is paramount to running the profiler when the 

event originally occurred. Profiler information is generated by, placing timers within the code and 

running them over and over. The profiling tool is able to build a "profile" of how fast or slow specific 

areas of the application will run.  

The Profiler is activated through Event Details from the Zend Studio Diagnostics section by selecting 

the option, Profile URL. 

 

Figure 44 - Event Details - Zend Studio Diagnostics, Profile URL  

The Profiling process takes place in the Zend Studio IDE and automatically opens the profiler results. 

Note: 

Zend Studio has to be installed and running to profile code. Also, the Server settings have to be 

configured  in Zend Core to allow connectivity between Zend Platform and the Studio Server. 

Understanding Profiler Results 

Based on the information provided with the profiler, developers can identify the cause for the 

performance problem and implement changes to the code accordingly.  

The Profiler user interface contains 3 tabs:  

 Profiler Information - provides general information on the profiling duration and date, number 

of files constructing the requested URL and more. In addition, it displays a Time Division Pie 

Chart for the files in the URL.  

 Function Statistics - provides you with the list of files constructing the URL and detailed 

information on functions in the files.  

 Call Trace - provides a hierarchical display of functions according to process order, enabling 

you to jump to the function, view the function call, function declaration, details and more.  

Note: 

Additional information about the Studio Profiler can be found in the Zend Studio Online Help. 



Zend Platform for i5/OS User Guide  

106 

To perform in-depth examinations of slow code or functions the Zend Studio Debugger can be used to 

debug information in the occurrence’s relevant context. 

The Debugger is also activated through Event Details from the Zend Studio Diagnostics section by 

selecting the option, Debug URL. 

 

Figure 45 - Event Details - Zend Studio Diagnostics, Profile URL  

This completes the description of the investigation and diagnostics tools that can be used to identify 

performance bottlenecks in the code. The next step is to see what performance tools can be applied to 

optimize the Web application’s performance. 

Performance Optimization Tools 

Performance optimization tools are used once it is apparent the code is performing as it should, and 

the Event Triggers are calibrated.  

From this stage on the performance optimization tools can be applied to further enhance Web 

application performance.  

There are several levels of performance optimization that can be applied to files: Caching (full page), 

Acceleration and Compression. 

Applying these three settings to your PHP code provides optimal performance boost. 

Optimization Tools: 

Caching, Acceleration and Compression 

The default settings for these optimization tools are as follows: 

 Caching - Default setting Off 

Description - Runs code and saves the output on the server 

 Acceleration - Default setting On 

Description - Compiles the Code and saves the compiled code on the server  

 Compression - Default setting Off 

Description - Saves a compressed version of the code on the server 

To apply these optimization tools to all of the PHP files on the server caching and compression must 

be activated. 

To activate/disable Caching, Compression or Acceleration, go to Performance | Settings and activate 

the enabling options. 

When to Apply Optimization Tools  

Now that we have established how to apply the optimization tools to “All Files” it is important to state 

that there are different circumstances that require disabling one or more of these features for select 

directories or files and in some cases altogether. The following section describes the possible 

optimization alternatives that should be considered when applying optimization tools. 

Content Caching (Dynamic) 
Dynamic Content Caching is the process of running code once and saving the output on the server for 

reuse in a set time frame (Cache Lifetime). Each time the code is requested, performance is improved 

by using the already run output instead of generating the same output each time. 



Performance 

107 

When Should Files be Cached? 

Files should be cached when their content is stable and does not require frequent changes. 

When Not to Cache Files? 

Caching is not recommended for files that have constantly changing output. For example: clocks, 

timers and database queries. (See Caching Alternatives to find out how to Partial Page Cache). 

How to Cache Files 

Caching by default is enabled (set to “ON”). In order to view/change the setting: 

1. Click the Performance tab. 

2. Pick a server to configure. 

3. Click the Settings tab. 

The dynamic caching enabled settings status will be displayed. Next, define the default caching 

settings. These settings are applied to all cached files. 

To prevent unnecessary memory use, caching has to be actively applied to either a selected file or 

directory. 

The performance module provides two options for caching files:  

 Through the File view 

 Through the Performance Test Report 

Caching with the File View 

Caching can be applied to single files or do entire directories. Go to Performance | File View and 

choose one of the following options: 

1. Apply Caching to a single file 

2. Apply Caching to an entire directory. 

Specific caching settings, given to files and directories, override the main settings defined in: 

Performance | Settings.  

Caching with the Performance Test Reports 

Performance Test Reports provide site analysis information in terms of performance gain and 

popularity. The information included in these reports provides a strong basis for evaluating if a file 

should be cached.  



Zend Platform for i5/OS User Guide  

108 

 

Figure 46 - Performance Test Report 

This screen shows if a file is cached and provides an option to cache a selected file from the list.  

To Cache a file from the Site Analysis Report: 

1. Go to Performance | Testing and select the Analyze Site Tab. 

2. Run a performance test (or view the last performance test) 

3. Go to the test results and press Edit. This will open the “Define Caching Conditions” dialog. 

Caching Alternatives 

Web pages that contain sections that continuously change can also be cached. This partial page 

caching solution can be accomplished through, applying caching APIs to portions of code that do not 

change. Partial Page Caching provides an intermediate solution for providing a partial performance 

boost that sustains the accuracy of changing content.  To find out more about “Partial Page Caching” 

go to: “Tutorial - Partial and Preemptive Page Caching,” 

Note: 

Dynamic Content Caching can be deactivated from Performance | Settings and changing Dynamic 

Caching Enabled to Off. This will remove all Dynamic Content Caching settings from the files on the 

server. However, Partial Page Caching will not be affected. Partial Page Caching can only be disabled 

by, removing the Caching APIs from the code. 

Code Acceleration 
Code Acceleration is the process of gaining a performance boost by eliminating the code compilation 

time. Once PHP code is compiled for the first time, it is saved in the server’s memory. Each time the 

code is called, the pre-compiled version is used instead of incurring a compilation lag each time the 

code is used. 

Note:  

Acceleration should not be confused with Caching.  Acceleration saves the compiled script in the 

server’s memory whereas Caching saves the script’s output in the server’s memory. 



Performance 

109 

When Should Files be Accelerated? 

The general recommendation is to always use Code Acceleration to boost Web application 

performance. Therefore, the default setting for Acceleration is set to "On". 

When Not to Accelerate (Blacklist)? 

There are some instances where it is preferable to disable acceleration for select files. Acceleration is 

disabled by means of a Blacklist. Files should be added to the blacklist under the following conditions: 

 Directories containing files that are larger than the Accelerators memory allocation or 

containing more files than the allocated quantity of files. 

 Large files that have high memory consumption 

 Files that have long execution time (makes the compilation save irrelevant). 

Increasing Accelerator Memory Allocation 

The alternative to blacklisting files is to increase the Accelerator memory allocation. The accelerator 

settings can be changed to increase allocated memory and the maximum quantity of files that can be 

accelerated. This alternative depends on the amount of memory available for allocation to the 

Accelerator. 

When the Zend Accelerator is disabled, only cached scripts are tested.  

To enable the Zend Accelerator, set the 'zend_accelerator.enabled' directive in the php.ini file to 'On'. 

To change Accelerator memory allocation: 

1. Go to Performance | File View 

2. In the Code Acceleration section: 

a. Increase the Accelerator Memory 

b. Increase the Maximum Accelerated Files (default 2000) 

Note: 

If the memory fills up quickly, especially if there is only a small amount of Accelerated files. Increase 

the memory allocation or blacklist the file. Files exceeding allocated memory or quantity will not be 

accelerated. 

Accelerator Duplicate Functions Fix 

Some PHP code produces different opcodes for different situations, function defined or not. This 

causes a discrepancy for the accelerator in situations where the accelerator caches one version, and 

then a different situation occurs that requires a different function. If not addressed the script would 

just cease to work and raise a "duplicate functions" error.  

To maintain proper performance in situations like these the zend_accelerator.dups_fix parameter 

should be activated. This parameter shuts down the Zend Accelerator’s duplicate function check, so 

that the errors will not occur.  

This parameter belongs to The Zend Accelerator settings in the PHP Settings screen (Configuration | 

PHP Configuration | Extensions | Zend Platform). 



Zend Platform for i5/OS User Guide  

110 

Reset Accelerator 

Programmatically resetting the Accelerator with accelerator_reset() 

You can programmatically reset the Accelerator by calling the PHP function accelerator_reset() from 

within your PHP script.  

Note: 

Under certain circumstances, such as a busy server or complex PHP processes, it may take a few 

minutes to reset. 

While Platform Performance Accelerator is being reset, a certain degree of server performance 

degradation takes place, since the accelerated scripts cannot be used during the reset period. The 

server will run as if Platform Performance had not been loaded. 

Note:  

Platform Performance Accelerator memory is also reset whenever the Web server is restarted. 

Code Compression 
Code compression is the process of using less bandwidth and increasing performance by compressing 

code before it is sent. 

When to compress files 

The default setting for file compression is Off. However, files should be compressed under the 

following conditions: 

 When the Web application’s users are accessing the Web application with various low 

bandwidths that can benefit from the extra performance gained by compression. 

 When there is a large quantity of Cached files. 

When not to compress files 

There are some instances where it is preferable to deactivate compression for select files. 

Compression can be deactivated in several ways: 

 Deactivate compression entirely – should be done if the server is set to handle compression 

to prevent compressing files twice and rendering them unusable. 

 Setting compression to cached files only – should be done when there is a large quantity of 

cached files and the rest of the files do not require compression. 

 Blacklist – selectively disable compression for files do not require compression such as 

pictures that are already compressed or small files that do not require compression. 

 When using PHP’s compression feature zlib. 



Performance 

111 

Setting Code Compression 

To change File Compression settings: 

1. Go to Performance | File View 

2. Select the appropriate Setting: 

a. None – disables Compression 

b. Only Cached Files – applies compression to cached files only 

c. All Files – collectively applies compression to all files (The list of files can be viewed 

in Performance | File View). 

Zend Optimizer 
The Zend Optimizer is a passive performance component that runs within the Zend Platform 

Framework and automatically optimizes scripts. Zend Optimizer is also designed to detect and load 

files encoded with the Zend Encoder. 

Note: 

The Zend Optimizer’s default setting is “On” which means the Optimizer will start to run as soon as 

Zend Platform is installed. The Optimizer component does not require any additional configurations. 

If you do not plan to use the Zend Optimizer to load encoded files, you can slightly improve the 

Optimizer’s performance by adding the zend_optimizer.enable_loader = 0.  This disables the 

transparent auto-loading mechanism that is built into the Zend Optimizer. 

To change zend_optimizer.enable_loader settings:  

Go to Configuration | Configure PHP Settings and choose from the list of directives Zend | Optimizer. 

Tuning 

The Tuning page is accessed from: Performance | Tuning. 

This page allows users to define their Accelerator's performance level to increase PHP application 

performance. Tuning helps improve performance by disabling the following features: Performance 

(Caching, Acceleration and Testing), PHP Intelligence (Event collection) and Zend Guard (Obfuscation 

and Licensing).  

Depending on the environment some of these features may not be necessary for example: in 

environments that do not deploy obfuscation and licensing the Zend Guard features can be disabled 

by using the Custom tuning level and selecting the options that disable licensing and obfuscation. 

 

Tuning settings are applied to a selected node, the name of the server to which the changes will be 

applied is displayed beneath the top navigation bar (use the "Change Server" option to select a 

different server to tune). 

There are four Accelerator Performance Levels: 

 Normal - Preserves normal activity without disabling any functionality. 

 Enhanced - Disables PHP Intelligence and Performance 

 Extreme - Disables PHP Intelligence, Performance and Zend Guard 

 Custom - Allows to independently select which out of the six options should be disabled. 

To apply Tuning Settings: 

Select an option from the "Accelerator Performance Tuning Level" drop-down and press Apply. 



Zend Platform for i5/OS User Guide  

112 

To view advanced options: 

Click on the "Advanced Options" button to expand the list. A list of options with a detailed description 

will be displayed. Use this list to also view and read the descriptions of the options included under 

each tuning level. 

To apply advanced options: 

1. Select Custom from the "Accelerator Performance Tuning Level" drop-down. 

2. Click on the "Advanced Options" button to expand the list. 

3. Check the options from the list to apply then to the server. 

Accelerator Performance Level Descriptions 

Enhanced Accelerator performance tuning level 

Applying this Accelerator performance tuning level impacts the following features:  

• PHP Intelligence - New events will not be collected. 

• Performance – File timestamps, consistency checksums and script timing will not be checked. 

Therefore, Accelerator tests will be disabled, and the Accelerator cache will not be refreshed. 

Extreme Accelerator performance tuning level 

Note: 

This Accelerator performance tuning level would, in some cases, cause your environment to become 

unstable and even in-operable. 

Applying this Accelerator performance tuning level impacts the following features:  

• PHP Intelligence - New events will not be collected. 

• Performance – File timestamps, consistency checksums and script timing will not be checked. 

Therefore, Accelerator tests will be disabled, and the Accelerator cache will not be refreshed. 

• Zend Guard - Obfuscated pages will become inaccessible along with files using Zend Guard 

licenses.  



Performance 

113 

Tuning Zend Platform for Optimal performance on i5/OS 

The following procedure describes the actions that need to be performed to tune Zend 

Platform for Optimal performance on i5/OS. 

To tune performance, make sure that: 

• Zend Optimizer 3.3.2 or above is installed. This version is available as part of the Zend Core 

2.5 package or as an update for Core 2.0.X. (Download Zend Core for free from: 

http://www.zend.com/downloads) 

• The directive ' zend_optimizer.disable_licensing ' is set to '1'  

(zend_optimizer.disable_licensing=1) in Configuration | PHP Configuration.  

Note: when set to Off, all code using Zend Guard Licenses will not be executable 

• The directive 'zend_accelerator.use_cwd' is set to '0' (zend_accelerator.use_cwd=0) in 

Configuration | PHP Configuration.  

Important Note:  

When set to Off (0), performance will be increased however, some existing applications including Zend 

Core and the Zend Platform Administration Console will not be available. 

• All modules are loaded and enabled. These by default are loaded and enabled out-of-the-box. 

Check to see they are loaded through the PHP Info tab (Configuration | PHP Info) or go to the 

Configuration tab to load the modules (Configuration | PHP Configuration). The modules are: 

Zend Debugger, Zend Download Server, Zend Optimizer and Zend Platform. 

• The JobQ and Java Bridge daemons have been stopped.  

This is critical for weaker machines. To disable the daemons, Go to the i5/OS command line 

and type "go zendplat/zpmenu" Select the "Stop service menu" (option 2 ZPSTOP) and select 

the options: 

o 3. Stop JavaMW server 

o 6. Stop Job Queue Daemon   

Set the Tuning Settings to Extreme (Performance | Tuning) to deactivate all non-critical 

functionality as follows: 

• zend_accelerator.validate_timestamps=0 - Notes: 

- Not needed for PHP 5.2.x  

- When set to Off all changes to existing files require that you restart the Accelerator using 

'accelerator_reset' to reset the contents of the Accelerator cache. Instructions on how to 

reset the Accelerator can be found in the section called " Code Acceleration". 

• zend_accelerator.consistency_checks=0 

• zend_accelerator.perform_timings=0 

Note: When set to Off, Zend Platform stops collecting acceleration info making the results in 

the option: Performance | Testing | Analyze Site incomplete. 

• zend_optimizer.obfuscation_level_support=0 

Note: when set to Off, all code obfuscated with Zend Guard will not be executable. 

Note: 

Performance tuning is set to Extreme by default since version 3.0.3a. 

http://www.zend.com/downloads


Zend Platform for i5/OS User Guide  

114 

Web Services 

IN THIS CHAPTER 

INTRODUCTION TO WEB SERVICES 

GENERAL TASKS 

GET/SET ACTIONS 

ADD/REMOVE SERVERS ACTIONS 

EVENT HANDLING 

Introduction 

Web services are a standardized way of allowing applications to interface and share data across the 

network. Web service messages are written in XML, 

thus allowing for different applications in different programming languages to interface with each 

other. 

 

Zend Platform provides an API that extends Zend Platform's functionality making it accessible via Web 

Services. Users will be able to get information and perform several tasks as follows: 

 General Tasks - Login to the server and get information about the servers and services in 

your environment. 

 Get/Set Actions - View and change directives. 

 Add/Remove Server Actions - Add or Modify allowed host settings or remove hosts. These 

actions can be applied to nodes or server groups (clusters). 

 Event Handling - Get Event information and Change Event Statuses. 

Note: 

Most of the functions check to see if the user is already logged-in to the system. Therefore, before 

calling a function call the login() function with the correct user information (user name and password).  

System Requirements for Web Services 

In order to run Web Services in your environment. Please make sure you have the following: 

 PHP 5  

 SOAP extension  

 You must have the following zend.ini entry - zend_central.web_services.enabled=1 (this 

setting is set by the installer when choosing to use Web Services in the installation process). 



Web Services 

115 

General Tasks 

ServiceResponse login 

ServiceResponse login(username, password) 

 Description: Used to login to the system with your given user name and password (the same 

user name used in order to log into Platform Administration).  

 Return Values: ServiceResponse  

 Parameters: string $username: Username to use for login. Same user name used in order to 

log into Platform Administration string $password: Password use for authenticating the user 

name 

Important Note: 

This function must be called before calling any other function that needs the user to be logged in.  

ServiceResponse getServers() 

ServiceResponse getServers() 

 Description: Get a list of servers. 

 Return Values: Returns a response object that will hold a list of all the clusters (and a list of 

their servers) and un-clustered servers (The term 'cluster' means a group of aggregated 

servers).  

 Parameters: None  

For example: 

cluster1 =>     server1 

server2 

server5 

cluster2 =>     server3 

server6 

server4 =>      null <- unclustered server 

server7 =>      null <- unclustered server 

ServiceResponse getVersion() 

ServiceResponse getVersion() 

 Description: Get the Web Service version to know what functionality it supports or not.  

(This function does not require login) 

 Return Values: Returns a response object with the web service version. 

 Parameters: None  



Zend Platform for i5/OS User Guide  

116 

Get/Set Actions 

DirectiveServiceResponse getAllDirectives 

DirectiveServiceResponse getAllDirectives(server) 

 Description: Gets information about directives on a given server. 

 Return Values: Returns an object containing all the directives read from the given server 

name and their relevant data (name, current value, loaded value, INI file the directive was 

read from).  

 Parameters: string $server: Server alias of the server you would like to get directives from 

DirectiveServiceResponse getDirective 

DirectiveServiceResponse getDirective(server, name) 

 Description:Gets the desired directive name and the server from which the directive value 

will be read.   

 Return Values: Returns a response object holding the following information: directive name 

current value, loaded value, name of INI file the directive was read from. 

 Parameters: string $server: Server alias of the server you would like to get directives from  

string $name: Directive name  

ServiceResponse setDirectiveOnServer 

ServiceResponse setDirectiveOnServer(server, name, value, ini_file, password) 

 Description: Sets a new value for the given directive on the specified server. The user must 

specify the ini file this directive will be set in. The Password is only needed if the ini_file is 

php.ini.  

 Return Values: None 

 Parameters: string $name: Directive name to set  

string $value: New directive value  

string $ini_file: Name of INI file to save the directive in  

string $server: Server alias of the server you would like to set directives on 

string $password: Password for INI modifier (required only if INI file is php.ini)  

ServiceResponse setDirectiveOnCluster 

ServiceResponse setDirectiveOnCluster(cluster, name, value, ini_file, password) 

 Description: Sets a new value for the given directive on all the servers belonging to the given 

cluster. The Password is only needed if the ini_file is php.ini. (assuming all servers in cluster 

use same password). 

 Parameters: string $cluster: Server Group name  

string $name: Directive name  

string $value: Directive Value  

string $ini_file: Name if INI file to use in order to set the directive  

string $password: Password for INI modifier (required only if INI file is php.ini)  



Web Services 

117 

Add/Remove Servers Actions 

ServiceResponse addAllowedHostOnServer 

ServiceResponse addAllowedHostOnServer(server, host_ip) 

 Description: Adds the given IP to the list of allowed hosts on the given server.  

 Parameters:  

string $server: Name of the server on which to allow the host's IP.  

string $host_ip: Host IP to allow  

ServiceResponse addAllowedHostOnCluster 

ServiceResponse addAllowedHostOnCluster(cluster, host_ip) 

 Description: Adds the given host IP to the allow_hosts directive in the zend.ini file (if it's not 

already there), on all servers in the given cluster  

 Parameters:  

string $cluster: Name of the server group on which to allow the host's IP. 

string $host_ip: Host IP to allow  

removeAllowedHostOnServer 

ServiceResponse removeAllowedHostOnServer(server, host_ip) 

 Description: Removes the given IP from the list of allowed hosts on the given server by 

adding it to the denied hosts list.  

 Parameters:  

string $server: Name of the server on which to deny the host's IP. 

string $host_ip: Host IP to deny  

removeAllowedHostOnCluster 

ServiceResponse removeAllowedHostOnCluster(cluster, host_ip) 

 Description: Removes the given IP from the list of allowed hosts on all the servers on the 

given cluster by adding it to the denied hosts list.  

 Parameters: string $cluster: Name of the group we want to deny the host's IP access. 

string $host_ip: Host IP to deny 

ServiceResponse isHostAllowed 

ServiceResponse isHostAllowed(server, host_ip) 

 Description: Checks if the given IP is in the allowed list on the given server.  

 Parameters: string $server: Name of server to check if the host IP is allowed or not  string 

$host_ip: Host IP to check  



Zend Platform for i5/OS User Guide  

118 

Event Handling 

EventServiceResponse getAllEvents 

EventServiceResponse getAllEvents(filter, offset, number_of_rows,sort_by,desc_order) 

 Description: Gets a list of Events along eith a short version of the Event Details. It is also 

possible to get a range of event rows by specifying an offset and number of rows from that 

offset.  

 Parameters: array $filter_array: Assoc. array where the key is the filter name and the value 

is the filter value integer $offset:  

integer $number_of_rows: Number of events to get 

string $sort_by: Value to sort by   

$desc_order: Ascending order (false) or descending order (true). Default is descending order.  

ServiceResponse getTotalNumberOfEvents 

ServiceResponse getTotalNumberOfEvents(fileter) 

 Description: Shows the total number of events according to the given filter. This function 

should be used along with the getAllEvents() function in order to get the total number of 

events matching a given filter and show these events by pages  

 Parameters: array $filter_array: Assoc. array where the key is the filter name and the value 

is the filter value  

EventServiceResponse getEventData 

EventServiceResponse getEventData(event_id) 

 Description: Gets a specific event ID and returns all data available for the given event. 

 Parameters: integer $event_id: The ID of the event you would like to get  

getEventFilterNames 

ServiceResponse getEventFilterNames() 

 Return Values: Returns a list (array inside a ServiceResponse) of all available filter names 

that can be used with the getAllEvents() function.  

 Parameters: None  

getEventFilterAvailableOptions 

ServiceResponse getEventFilterAvailableOptions($filter_name) 

 Return Values: Returns all the possible options that the given filter name can accept (filter 

name is one of the elements returned by the getEventFilterNames() function.  

 Parameters: string $filter_name:  

getEventSortOptions 

ServiceResponse getEventSortOptions() 

 Return Values: Returns all the possible sort options for events 



Web Services 

119 

debugEvent 

ServiceResponse debugEvent(event_id) 

 Description: Starts a debug session while recreating the exact conditions that resulted in this 

event (same as the 'Debug' button in the 'Event Details' page). 

(This option works with Zend Studio) 

 Return Values: Will start a debug session  

 Parameters: integer $event_id: The ID of the event you would like to debug.  

profileEvent 

ServiceResponse profileEvent(event_id) 

 Description: Profiles the script that originated the given event (same as the 'Profile' button in 

the 'Event Details' page).  

 Return Values: Will start profile session  

 Parameters: integer $event_id: The ID of the event you would like to profile  

deleteEvent 

ServiceResponse deleteEvent(event_id) 

 Description: Use this function to remove events from the Database (same as the 'Delete' 

button in the 'Event Details' page).  

 Parameters: integer $event_id: The ID of the event you would like to delete.  

ignoreEvent 

ServiceResponse ignoreEvent(event_id) 

 Description: Changes the Event's status to Ignored (same as the 'Ignore' button in the 'Event 

Details' page).  

 Parameters: integer $event_id: The ID of the event you would like to set as 'ignored' 

closeEvent 

ServiceResponse closeEvent(event_id) 

 Description: Changes the Event's status to Closed (same as the 'Close' button in the 'Event 

Details' page).  

 Parameters: integer $event_id: The ID of the event you would like to set as closed  

preserveEvent 

ServiceResponse preserveEvent(event_id) 

 Description: Sets the Event's status to Preserved (same as the 'Preserve' checkbox in the 

'Event Details' page).  

 Parameters: integer $event_id: The ID of the event you would like to set to be preserved 

unpreserveEvent 

ServiceResponse unpreserveEvent(event_id) 

 Description: Changes the status of a preserved so that it will be deleted in the next periodical 

Database cleanup. 

 Parameters: integer $event_id: The ID of the event you would like to set to be un-preserved. 



Zend Platform for i5/OS User Guide 

120 

PART IV: ENTERPRISE SERVER 
The Enterprise Server provides enterprise grade functionality for managing multi-server 

environments, ensuring interoperability and information consistency between nodes belonging to a 

cluster. 

 

The Enterprise Server includes: 

 Job Queues - Zend Platform’s Job-Queue provides PHP production environments with a 

standard approach to streamline offline processing. 

 Zend Download Server - A PHP (Zend Engine) plug-in which deals with serving large 

downloads  which are served over the HTTP protocol. 



Job Queues 

121 

Job Queues 

INSIDE JOB QUEUES 

INTRODUCTION  

JOB QUEUES 

JOB QUEUE API 

JOB QUEUE TAB (JOB MANAGEMENT) 

CREATING JOBS 

QUEUES 

JOBS 

JOB DETAILS 

JOB QUEUE SETTINGS 

Introduction 

Zend Platform’s Job Queues feature provides PHP production environments with a standard approach 

to streamlining offline processing.  

Job Queues are serviced by the Job Queue Server and provide organizations with the ability to pre-

schedule and determine Job activity to the level of even defining the processing server. Job Queues 

provide the necessary functionality to delay the execution of processes that are not essential during 

user interaction with the Web Server. Off loading non essential processes frees up your servers to 

provide a better user experience in terms of response time. 

Requests can be off-loaded in one of two ways: 

 By rerouting the requests to different Web server (Such as a server that does not perform 

customer-facing processes).  

 By scheduling requests to be performed in low traffic hours to reduce the traffic on the Web 

server 

Incorporating job management functionality into Zend Platform provides several obvious benefits such 

as the ability to manage queues in one-stop-shop fashion to managing your Web application 

environment from a "single point of access".  

Along with these advantages, Zend Platform also enables you to: 

 Manage Job fault and Performance using PHP Intelligence which fully monitors Jobs run by 

the Job Queue. Subsequently, whenever a Job generates a fault or performance degradation 

occurs, PHP Intelligence will generate a system Event containing the occurrence's details - 

information that can be later used to debug the occurrence.  

 Generate real-time and historical reports for Jobs - Zend Platform offers Queue and Job 

reporting according to various criteria including: Current Jobs and Job History as well as 

current Queue load statistics that indicate any potential performance degradation.  

 Leverage Job performances through code caching and content caching - Jobs can run under 

the Platform performance environment.  

 Flexible installation options - Queues are optionally created during Platform Node installation. 

After installation the Queue becomes immediately available to Zend Central and can be 

configured and controlled from a central location.  



Zend Platform for i5/OS User Guide  

122 

Job Queues 

Jobs are scheduled routines, that are processed at a certain point in time, whether it be time based or 

action based. 

Zend platform's Job Queue functionality provides the means to run jobs in several ways to suit 

different needs using the following tools: 

 The Job Queue API 

 The Job Queue Tab in Zend Platform 

Jobs can be created by directly adding functions to the Code using the Job Queue API (for more 

information see the User Guide, chapter, "APIs and Directives"). These Jobs are automatically 

detected by the Job Queue. Additional, simpler jobs can be created directly from the Jobs Tab by 

basically, defining the Jobs METADATA and directing to a script that needs to be run. Once Jobs are 

defined or identified by the Job Queue functionality you gain the ability to change, modify and 

reschedule the Job details and settings while storing historical information for future reference. Please 

see the Zend Platform User Guide for a complete description of the Job Queues API and its 

components. 

The Job Queue API 
The Job Queue API, contains a set of functions that enables to run a Job directly from your 

application's scripts. Running Jobs with the API, is beneficial in situations where a certain query has to 

be run in parallel with other actions. Such a situation could be in an online store where a user's credit 

card details have to be authenticated. In such a case the authentication process can be a Job that is 

activated when the user enters the credit card details. The authentication process, may take some 

time therefore, this job can be run separately on a separate server or even on a dedicated secure 

server (for credit card details). These Jobs can even be scheduled to run the authentication query at a 

later time when there is less traffic. 

An example of this kind of script is as follows: 

<?php  

$job = new ZendAPI_Job('/usr/local/scripts/scrip1.php'); 

$job->setJobPriority(JOB_QUEUE_PRIORITY_HIGH); 

$job->setUserVariables(array('name' => 'customer name', 'email' => 

'somebody@somewhere.com'));            

?>  

This script should be added to the application's script, at the point where you want to run a query. As 

we can see from this example, the new Job ($job) contains information indicating to the location of a 

script (scrip1.php). This script will contain the query that we want to run. Surrounding that script are 

different parameters that define the Job's variables, priority and other essential information. This 

information is also picked up by Zend Platform so that it can be viewed in the Jobs Tab eliminating the 

need to open numerous small files in order to find information relevant to managing Jobs. 

Important Note: 

All scripts managed by the Job Queue have to be placed in a set location. To view the default location 

or define a different location go to Job Queue | Settings and in the General Settings section view or 

change the Scripts Folder.  

This naturally is only a simplified example  of a basic Job that will run a query (script) and send an e-

mail. In the Chapter on APIs and Directives we will show a complete description of the Job Queue API. 



Job Queues 

123 

Additional Examples 

Change the recurrence data of an existing job and add to it a dependency (assuming that the job id is 

known)  

<?php  

$job_queue = new ZendAPI_Queue('gollum.zend.office'); 

$job_queue->login('1234'); 

$job = $job_queue->getJob(8); 

$job->setRecurrenceData(3600, time()+3600*24); 

$job->setJobDependency(16);        // This job will perform only after job 16 was 

succeffuly executed 

$job_queue->updateJob($job);            // The job queue will update job #8 with the 

new properties of the given Job object 

$job_queue->logout(); 

?> 

Get all the jobs from a queue with urgent priority that waiting for process and belong to application id 

8, change their priorities to LOW  

<?php  

$job_queue = new ZendAPI_Queue('gollum.zend.office'); 

$job_queue->login('1234',8); 

$jobs = $job_queue->getJobsInQueue( 

                array('priority' => JOB_QUEUE_PRIORITY_URGENT, 

                      'status' => JOB_QUEUE_STATUS_WAITING 

// we could also request for jobs in application id using the following line: 

//'application_id' => 8 

                ) 

    ); 

foreach ($jobs as $job) {    /* @var $job Job */ 

    $job->setPriority(JOB_QUEUE_PRIORITY_LOW); 

    $job_queue->updateJob($job); 

} 

$job_queue->logout(); 

?> 



Zend Platform for i5/OS User Guide  

124 

Job Queue Tab (Job Management) 

The Job Queue tab is accessed by clicking the Job Queues option. The Job queue configuration and 

management options include the following tabs: 

 Queues - Displays Queue information and statistics. 

 Jobs - A filterable display of Job information. 

 Settings - Configure Queue settings. 

Note:  

In all of the tabs, the selected Queue name is displayed in the upper status line. 

Queues 

A queue is a logical container which contains a set of Jobs to be executed concurrently. Currently it is 

possible to setup a single Queue for a single machine.  

The Queue page allows users to handle and manage queues across a cluster.  

The Queue page is accessed from: Job Queues | Queues. 

Through this screen users can: 

 View Queue details and statistics. 

 Queue Operations: 

• Add Jobs. 

• Suspend a Queue. 

• View/Edit Settings. 

 

Figure 47 - Queue Statistics Page 

Queue Details and Statistics  

Queue Statistics table displays information regarding a specific queue. 

The table's columns are grouped into three different groups pertaining to different information as 

follows:  

 Completed Jobs - Displays the number of completed jobs, divided into Successful and Failed:  

• Successful - Number of Jobs belonging to the queue that ran successfully. 

• Failed - Number of Jobs belonging to the queue that ran but failed. 

 Current Jobs - Displays the number of Jobs that are currently being processed, by type. The 

types are:  

• Recurring - Number of recurring jobs belonging to the queue.  



Job Queues 

125 

Note  

All recurring jobs are counted in this column regardless of their execution status i.e. including  'Ready 

to Run' and 'Waiting' jobs.  

• Ready to Run - Number of jobs belonging to the queue that are ready to be executed.  

• Waiting - Number of jobs belonging to the queue that are waiting to be executed.  

Note:  

Jobs with the status Scheduled (i.e. waiting to future schedule time) and Dependent (i.e. waiting for a 

previous job to be completed) jobs are counted in this column.  

 Load Statistics - Displays statistics regarding job occurrences such as jobs that 

entered/exited the queue etc. The Statistics can be defined to display information on 

occurrences in the last X minutes. To define the duration go to Job Queues | Settings and set 

the time in the field "Save statistics history". This part of the table displays four types of 

statistics for queues: 

• Average Waiting Time - The average time it took for all of the jobs to move from the 'Ready 

to Run' status to 'Running'.  

• Average Time in Queue - The average time it took for all of the jobs to move from the 

'Running' status to Successful/Failed.  

• # of Requested Jobs - The number of jobs that have exited the queue (either successful or 

failed).  

• # of Served Jobs - The number of jobs that have entered the queue (i.e. added to the 

queue).  

 

The bottom row of the table displays the statistical accumulation of the entries in the table.  

Queue Additional Details 

Clicking on a row will automatically open the Jobs page which will display the Jobs related to the 

selected queue. The selected queue will also be remembered for further operations so that when 

entering the Settings page the settings for the previously selected will be displayed.  

Queue Operations 
The Queues table has an additional column that includes the different actions that can be performed 

on a queue as follows: 

 Operations - The possible actions that can be performed on a queue. the operations are as 

follows: 

• Add Job - Add a new job to the queue. Clicking this button opens the 'Job Details' page in add 

mode. 

• Suspend - Suspend the entire Queue (Jobs belonging to a queue can be individually 

suspended by clicking on the Queue and modifying the queues displayed in the jobs page). 

• Settings - View and Edit Queue settings. 



Zend Platform for i5/OS User Guide  

126 

Add Jobs 

Clicking the "Add Jobs" button in the table opens the Job Details screen in edit mode. To add a Job 

enter the Job information and click " Save" (For more information on creating new Jobs see Job 

Details).  

Note: 

Jobs can only be added if there is an existing Job script located in the "Scripts folder" you defined in 

the Job Queue | Settings screen.  

Suspend a Queue 

Clicking the "Suspend" button in the table changes the status of the Queue to Suspended. In this 

status, all Jobs belonging to the Queue will not be executed and running jobs will be completed and 

only then suspended. Clicking this button again will toggle the status of a suspended queue to un-

suspended and the Jobs belonging to this queue will be resumed at the next possible time (for 

recurring jobs). 

New Jobs can be added to a suspended queue however, they will not be executed until the queue is 

un-suspended. 

View/Edit Settings 

Clicking the "Settings" button opens the Job Queue Settings screen and loads it with the selected 

queues settings (For more information on viewing and editing queue settings see Job Queue Settings) 



Job Queues 

127 

Jobs 

A Job is a specific task that can be independently executed. Using the Zend Platform's Job Queue 

feature, Jobs can be handled in queues providing an easy way to manage and handle Job execution. 

The Jobs screen is accessed from: Job Queues | Jobs. 

Through this screen users can: 

 Filter Table Data 

 Locate Jobs by their ID number 

 View Job Details in a sortable table 

 Manage Jobs 

 

Figure 48 - Job Queue Screen 



Zend Platform for i5/OS User Guide  

128 

Filtering Table Data  

Zend Platform allows you to filter the Jobs displayed in the Jobs table.  

The filter options are as follows:  

 Queue - The name of the Queue 

 Status - The statuses are: Scheduled, Dependant, Ready to Run, Running, Suspended, 

Successful and Failed. 

 Priority - High, medium or low. 

 Host - The host on which the Job is to be executed. 

 Application 

 Recurrence - Jobs can be nonrecurring (run once) or recurring (defined to be executed 

repeatedly). 

 Name - The alias for the Job script. Defined when creating a new Job or in Code based Jobs 

defined in the function: setJobName($name), if left empty the filter by script name. 

The status line (above the filter by options) changes to show a summary of the items that are 

currently displayed in the table.  

To filter the data displayed in the Jobs table:  

1. Select the filter criteria to apply to the table by clicking "Filter By" and selecting the options 

from the drop-down lists..  

2. Click "Go" to display the filtered events in the Jobs table. 

The Jobs Table displays the following information: 

 ID - a unique identifier given to each Job managed through Zend Platform. 

 Name - an alias for the Job script. Defined when creating a new Job or in Code based Jobs 

defined in the function: setJobName($name), if left empty the script name will be displayed. 

 Status - the current state of the Job (see list of statuses below) 

 Priority - the importance of the job, the priorities are (in order of importance) Low, High, 

Normal, Urgent. Defined when creating a new job or in code based Jobs defined in the 

function: $_priority = JOB_QUEUE_PRIORITY_[TYPE]; 

 Application - an additional identifier for grouping and filtering Jobs. Defined when creating a 

new Job or in Code based Jobs defined in the function: $_application_id = null,  if left empty 

no name will be displayed. 

 Host - the name of the Host on which the Job was generated. 

 Script - the name and location of the actual script initiated by the Job.  



Job Queues 

129 

Job statuses  

A Job can hold one of the following statuses:  

 Scheduled - a Job which is waiting to be executed since it has been scheduled to a time later 

than the current time.  

 Dependent - a Job which is waiting to be executed since it waits for a previous Job to finish 

running.  

 Ready to run - a Job which is ready to be executed.  

 Running - a Job which currently runs.  

 Suspended - a Job which can run but is currently suspended (paused). A Suspended Job can 

be resumed and hence moved to another status.  

 Successful - a Job which has completed and resulted in a success.  

 Failed - a Job which has completed and resulted in a failure. 

Note: 

The maximum count of Jobs displayed in this page is configured in the Preferences page: Job Queues 

| Settings. 

Locating Jobs by Job ID  

Each Job is given a unique ID number when it is created. If you know the Job ID of a specific Job you 

want to view, enter the number into the "Find Job by ID" field and click Find to display the Job in the 

Jobs table. 

View Job Details  

The Jobs table displays various details regarding the displayed Jobs.  

Apart from the basic information displayed users can click on a Job in the Jobs table and open the Job 

Details Page (for more information on Job Details see Job Details).  

Manage Jobs 

The Jobs tab includes the following Job management options: 

 Delete - Remove a Job from the list. Jobs that are in progress will complete running and then 

be deleted. 

 Resume - Resume a Job that was previously suspended. 

 Suspend - Suspend a Job from running. 

To apply one of these options to a Job, select a Job by marking the check box (you can select more 

than one) and click one of the Job management options (Delete, Resume or Suspend). 

If you want to apply one of the options to all the Jobs in the table click "Select All". 

Note: 

When applying one of the management options to multiple Jobs make sure their current state does 

not conflict with the option for example, you cannot delete active Jobs. 



Zend Platform for i5/OS User Guide  

130 

Job Details 
The Job Details tab, displays a specific Job's properties. This page has two modes: Read-only and Edit.  

 

To add Jobs go to: Job Queues | Queues and click "Add Job". 

To view Job details go to: Job Queues | Jobs and click on one of the Jobs in the table. 

To edit Jobs go to: Job Queues | Jobs, click on one of the Jobs in the table. 

 

Figure 49 - Job Details 



Job Queues 

131 

Job Details Page Components 

The following is a detailed description of the Job Details page components (Components marked with 

* can be edited in edit mode): 

 Job Id - A unique identifier that is given to each Job. You can use this identifier to search for 

Jobs in Job Queues | Jobs by entering the ID into the "find Job by ID" field. 

 Name - The name given to the Job by the user. 

 Status - The statuses are: Scheduled, Dependant, Ready to Run, Running, Suspended, 

Successful and Failed. 

 *Priority - High, low or medium. 

 Application - The application running the Job 

 Host - The host on which the Job runs. 

 Script File -The location of the script for running the Job. 

 *Dependency - Create a dependency on another Jobs completion. In edit mode, clicking here 

will open a pop-up with a "search Job by name" option. 

 *Scheduling - View or define when the Job will run, recurrence details and effective date. 

 Last Run - Details of when the Job last ran. 

• Show last job output - A link to HTML or Error details  

 Context - Includes the following Variables: 

• *User Variables - Shows the name and value of the Job's user variables. 

• Globals - Shows the name and values of the Job's global parameters. 

 Preserve (E) - if this flag is turned on, it means that the Job history will be saved in the 

history data even after the 'Time to Save History' time has passed. This is useful if the Job 

history needs to be saved.  

Job Details Page Buttons: 
The following actions can be applied to Jobs: 

 OK - Closes the dialog.  

 Delete - Opens a dialog asking whether the user is sure he wishes to delete the Job. Clicking 

"No" will close the dialog, and clicking "Yes" will delete the Job and the Jobs page would be 

displayed. Deleting a Job would delete its instances from the historical data as well.  

 Suspend/Resume - this is a toggle button, it will be active for suspended Jobs and disabled 

when a Job is not suspended.  

(This button is only displayed when Jobs are still running)  

 Edit - Displays the same page in the "Edit" mode.  

(This button is only displayed when Jobs are still running)  

 Re-queue - Displays the same page in "Edit" mode. As a result users will be able to re-set the 

scheduling data, and then re-queue the Job (add it back to the Queue).  

(This button is only displayed when Jobs are still running)  



Zend Platform for i5/OS User Guide  

132 

The following buttons are only displayed in Edit mode:  

1. Save - Saves the Job's data.  

2. Cancel - Closes the Job Details page without saving changes.  

Job Queue Settings 

The Job Queue Settings page displays settings associated with a specific Queue.  

The Job Queue Settings page is accessed from: Job Queues | Settings. 

Through this screen users can: 

 View Queue settings. 

 Edit Queues 

 

Figure 50 - Job Queue Settings 



Job Queues 

133 

View Queue Settings 

Queue settings are the specific definitions that define the Queue's behavior. There are two ways to 

determine which Queue will be displayed in the Settings screen: 

1. Select a queue from the "Settings for Queue" drop-down list. 

2. Jump to the Job Queue Settings tab from the Queues tab (Job Queues | Queues). Clicking the 

Settings button in the Queue Statistics table automatically opens the Job Queue Settings 

screen and loads the selected queues details. 

Windows Vista Note: 

The Start/Stop options are not available in Windows Vista. Use the services manager to Start and Stop 

services.  

Queue Settings 

The title of the Job Queue Settings tab always states the name of the Queue displayed in the tab. 

Typically, the recently-selected Queue (i.e., the one recently selected in the Queues page) will be 

selected in the drop-down list. If a Queue was not previously selected the user has to choose a queue 

from the "Settings for Queue" drop-down list. Displayed queues are remembered therefore users may 

switch tabs and when they return to the Job Queue Settings tab and the same queue will still be 

displayed. 

The Job Queue Settings screen is divided into three sections: 

1. General Settings: 

 Maximal Queue Depth - Specifies the amount of concurrent Jobs for the queue or 

leave it unlimited. 

 Save Statistics History - Specifies how much of the queue's history should be saved. 

 Maximal re-queue times - Specifies how many times a Job can be re-queued. 

 Sliding window - Collects Job Statistics 

 Queue Alias - Displays the Queue's name according to the name given in the 

installation process. 

 Script folder - Specifies the file name and location of the script the Queue should 

run. 

2. Password Settings - Specifies the security settings to limit editing and deleting a Queue to 

authorized users only. Not entering a password will mean the specific Queue will not require 

authorization. 

 Enter New Queue Password - Specifies a password for limiting access to the Queue. 

 Confirm New Password - Confirm the password. 

3. Network Settings - List of allowed hosts. 

 Add/Edit/Remove Server Host - Configure the IP's that are permitted to 

communicate with the Queue Daemon on this server. 



Zend Platform for i5/OS User Guide  

134 

Edit Queues 
To edit a queue: 

1. Go to Job Queues | Queues 

2. In the Queue Statistics table, Click "Edit" 

The Job Queue Settings tab will open with the selected queue's information  

3. Edit the Queue's settings and press Save. 

Job Queue Server 
The Job Queue Server is a container for Queues, it executes Queues according to a scheduling 

algorithm (e.g. Round Robin). Typically a machine only runs one Job Queue Server.  

A Queue is a logical container which contains a set of Jobs. The Queue executes the Jobs and contains 

information about each Job. Each Queue is associated with a set of settings. For additional 

information, please refer to Job Queue Settings.  

Creating Jobs 

Jobs are scheduled routines, that are processed at a certain point in time, whether it be time based or 

action based. 

Zend platform's Job Queue functionality provides the means to run jobs in several ways to suit 

different needs using the following tools: 

 The Job Queue API 

 The Job Queue Tab in Zend Platform 

Jobs can be created by directly adding functions to the Code using the Job Queue API. These Jobs are 

automatically detected by the Job Queue. Additional, simpler jobs can be created directly from the 

Jobs Tab by basically, defining the Jobs METADATA and directing to a script that needs to be run. 

Once Jobs are defined or identified by the Job Queue functionality you gain the ability to change, 

modify and reschedule the Job details and settings while storing historical information for future 

reference.  



Zend Download Server (ZDS) 

135 

Zend Download Server (ZDS) 

The Zend Download Server* is a PHP (Zend Engine) plug-in which efficiently deals with serving large 

downloads such as videos e.g. .mpeg files, binary products such as .exe and .msi files, and any other 

large files which are served over the HTTP protocol. 

How it works: The Zend Download Server supports two modes of operation (both of which can be 

used together or separately according to your needs): 

 Manual mode - The download is initiated by a PHP script using one simple PHP API function 

call. Not only does it allow you to serve files which aren't under your web server's document 

root but also it allows you to run logic such as access restriction checks before the download 

is started. 

 Transparent mode - In your web server's configuration file you map the files you want to be 

sent through the efficient downloading mechanism to PHP, and the Zend Download Server 

will jump into action automatically and serve them. 

More information about configuring and testing the ZDS can be found in the Zend platform User 

Guide. 

*The Download Server is currently not applicable for Windows Operating Systems. 

 

Configuring the Zend Download Server (ZDS) 

(This feature is currently not applicable for Windows Operating Systems) 

The ZDS (Zend Download Server) is a PHP (Zend Engine) plug-in. The purpose of this plug-in is to 

efficiently deal with serving large, downloads. This is done to preserve website performance levels 

when handling large downloads that are served over the HTTP Protocol and consume bandwidth.  

Downloads include, Video Files, Binary Products (such as .exe and .msi files), and other large files 

which are served over the HTTP protocol, and can potentially limit the performance of your website.  

The ZDS provides two options: 

1. Configure ZDS Settings 

2. Test ZDS 

ZDS functions in two modes:   

 Manual Mode - Calling the API function zend_send_file() from PHP scripts.  

 Transparent Mode – mapping file extensions to zend_mime_types.ini  

Either mode can be run separately or in conjunction. Read on to find out how to configure the ZDS to 

run in either mode. 

Manual Mode 
In Manual mode, downloads are initiated by a PHP script that uses one all-purpose PHP function call. 

ZDS includes the PHP function zend_send_file(filename). Calling zend_send_file() immediately starts 

the file download and terminates your PHP script's execution. This effectively frees up the Apache 

process to handle the next incoming request.  

The zend_send_file() function can also serve files that are not under the Web server's document root. 

Furthermore, it can be used to run logical functions such as access restriction checks, before 

downloads are started.  

Usability Example 



Zend Platform for i5/OS User Guide  

136 

If a download function is called my_send_file($filename), you should integrate the zend_send_file() 

call in the following way in your source code: 

if (function_exists("zend_send_file")) { 

    zend_send_file($filename); 

} else { 

    my_send_file($filename); 

} 

Alternate Method 

zend_send_file can also be set to accept a second argument, the mime type of the file. This will 

override the default mime type setting.  

The parameters are: zend_send_file(string filename[, string mime_type]) and it would be called in the 

following way in your source code: 

if (function_exists("zend_send_file")) { 

    zend_send_file("/path/to/file.wma", "video/my-wma-type"); 

} else { 

    my_send_file($filename); 

} 

Note: 

If the mime_type is not specified or empty, the first mime type mechanism is used. 

Manual Mode Usability Notes: 

Do not create any output in Manual mode, before calling zend_send_file() - neither headers nor body - 

as this will interfere with the HTTP download. 

Once you call zend_send_file(), the script terminates, so make sure all of your business logic runs 

before you call this function. 

Sometimes files that are not under the same document root need to be served. Therefore, It is 

recommended to use the full path name to the file you want to serve. This will guarantee your script 

will work, even if you move it from your Web server's document root. 

Transparent Mode  
In Transparent mode, the file types that should be downloaded via ZDS are preconfigured, by 

mapping these files in the configuration file of your Web server. Files greater than the min_file_size 

directive will be automatically served by the ZDS.  

To run ZDS in Transparent mode, make sure you meet the following requirements: 

 The file extensions appear in the zend_mime_types.ini file and the file is mapped to the 

correct mime type.  

For example: to serve .mpeg files via the ZDS, add the following line in 

zend_mime_types.ini: 

video/mpeg mpeg 

 In your Apache Server’s configuration file, map the file type to PHP.   

 For example, to map all .mpeg files to the ZDS in Apache by adding the following line to the 

Apache Server’s configuration: 

AddType application/x-httpd-php .mpeg 



Zend Download Server (ZDS) 

137 

Usability Note for Mac OS (In case of persistent problems with this OS please contact Zend 
Support.) 

Mac Players cannot work when the file in the URL has .php extension. 

There are three suggested solutions to this issue based on different possible requirements: 

1) Use the following line where $new_name is the new file name.: 

header("Content-Disposition: attachment; filename={$new_name}"); 

2) Rename the extension to WMA (and assign the WMA extension to PHP). This will enable these files. 

However, by assigning the WMA extension to PHP, ZDS would automatically parse it as a download. 

Therefore the WMA extension should be removed from the mime types file. Please note that, files will 

now be delivered with default content type, which might have effect on other players. 

3) Add a condition to not auto-download these files, unless required by zend_send_file" 

4) Add a parameter to the zend_send_file with the required mime type. 

Both methods (manual mode and transparent mode) ensure that the Web application will continue to 

work even if, for some reason, you decide to temporarily disable the ZDS, (as long as the ZDS module 

was loaded). 

To Configure the ZDS:  

Go to Performance | Settings and go to the Zend Download Server Settings section of the Settings 

screen.  

 

 

Figure 51 - Zend Download Server Settings 

The settings screen contains three general ZDS configuration settings: 

 Minimum File Size - The minimum size of files that will be served by the ZDS. Small files 

need not be served by the ZDS, since performance gain is insignificant. Default: 64Kbytes. 

 Server MaxClients - The testing tool (in Platform Administration) uses this value to determine 

your server’s MaxClients. Keep this value updated to the actual number of max clients of 

your server. 

 Log File - The name and location of the log file where the ZDS reports completed downloads. 

Default: <install_dir>/logs. Make sure the directory exists and that the user who starts the 

Web server (usually root) has “write” permission. 

Server MaxClients Recommendation:  

The MaxClients setting depends on your server hardware. To achieve accurate test results the server 

should be set between 50-150 MaxClients. The MaxClients value must be the same in the Download 

Server Settings and the Web server’s configuration file. 

These settings are applied to downloads handled in one of the two handling modes: Manual and 

Transparent 



Zend Platform for i5/OS User Guide  

138 

Testing the ZDS 
Once the ZDS has been configured a test can be run to check and analyze the overall efficiency.  

 The default ZDS test uses the Manual mode of operation to invoke a PHP script, which sends 

a file of approximately 300KB.  

 The same test tool can be used to check the Transparent mode. Make sure that you correctly 

map the file type you are checking in your Web server's configuration file - according to the 

configuration instructions. 

The test simulates multiple requests for a specified URL, with and without ZDS. There are three sets 

of tests, each test is performed twice (once with the ZDS disabled and once with the ZDS enabled). 

These tests differ in the number of concurrent clients that simultaneously perform requests to the 

server.  

Note:  

It is extremely hard to artificially test ZDS. The main reason is that testing it on a LAN can easily 

saturate your local network, and if your MaxClients is very high, Apache Benchmark (ab) may have 

difficulty handling the concurrency. For this reason, it is recommended to test ZDS with a relatively 

low MaxClients setting (e.g., 50-150) so that you don't reach any of these limits. The ZDS includes a 

version of ab, which was modified to support bandwidth throttling, which is used by the testing tool. 

Caution: 

During a test, your Web server will be fully loaded. A test can take several minutes so you should run 

it on a development machine or on an offline production machine. 

To Test the ZDS:  

Go to Performance | Testing and go to the Test Download tab. 

  

Figure 52 - Performance - Testing – Test Download Tab 

The Test Download Tab consists of two sections: The test options are on the upper section and the 

test results appear below (after running a test or displaying the last test results). 



Zend Download Server (ZDS) 

139 

Running a Test 
1. Type in the URL you want to test. 

The default test is a PHP script which uses zend_send_file() to send a 300K zip file (Testing 

very large files will take a very long time). 

2. Choose the bandwidth limit you want to simulate for the clients. For a faster test, select a 

higher bandwidth (You cannot choose full bandwidth because your network card will be 

saturated, making the test irrelevant. The test tries to simulate a typical Internet server that 

has clients connected either by ISDN or DSL). 

3. Enter the number of maximum clients that your server can handle. 

Use the precise value by checking the value of the MaxClients directive in your server’s 

configuration file (The ZDS tries to identify your MaxClients value in the installation process, 

via the httpd.conf file, which is the default value. However, this value can be changed after 

the installation; and should be double-checked. Using an inaccurate MaxClients value, may 

not present accurate results). 

4. Click Run. 



Zend Platform for i5/OS User Guide  

140 

Understanding Test Results 
Once the tests have completed, you will see two tables and graphs with results that show Requests 

per Second and Average Time per Request for each test run. 

  

Figure 53 - Zend Download Server - Test Results 

Disabling the Zend Accelerator changes the test configuration to cached scripts only. 

Note:  

If you do decide to run the ZDS Test on a production server, you can watch the log file to see how 

many concurrent jobs ZDS is handling. This indicates the number of Apache processes that would 

have been used if the ZDS were not installed. 



Zend Download Server (ZDS) 

141 

Download Server Settings 

Minimum File Size 

The minimum size of files that will be served by the Zend Download Server. 

Small files do not need to be served by the Zend Download Server (although they can be) since the 

gain is insignificant. 

Default file size is 64Kbytes. 

Apache Server MaxClients  

This value is used by the testing tool in Platform Administration to determine the MaxClients of your 

server. 

You should keep this value updated to the actual number of max clients of your server (in Apache, 

this value can be found in your httpd.conf file). 

Recommended: For accurate test results set the server between 50-150 MaxClients (Do not forget to 

also change the web server configuration). 

Log File 

The name and location of the log file where the Zend Download Server reports completed downloads. 

Note:  

Make sure the file's directory exists and is writable by the user who starts the web server (typically 

root). 

Default is /usr/local/Zend/Platform/logs/ZDS.log 

Test Download 

The Zend Download Server (ZDS) is a transparent process that runs in the background to service 

large downloads. The performance gain obtained by using the ZDS is measured with the Test 

Download option. 

The Test Download option checks the efficiency of the Download Server. Test Download simulates 

multiple requests for a specified URL with and without the ZDS, thereby creating its own benchmark 

for comparison. This feature is currently not applicable for Windows Operating Systems. 

To Run a Download Test:  

Go to: Performance | Testing and choose the Test Download tab.  

1. Enter the URL for Testing. (The default is a proprietary Zend PHP script which uses 

zend_send_file() to send a file.)  

Note:  

Testing very large files will take a very long time.  

2. Enter the bandwidth limit you want to simulate for the clients (For a faster test, select a 

higher bandwidth).  

Note:  

Do not select full bandwidth, doing so will saturate your network card that will make the test 

irrelevant. The test tries to simulate a typical Internet server that has clients connected either by 

ISDN or DSL. 

3. Enter the Max Clients value defined for your server. Insert the accurate value by checking the 

MaxClients directive in the httpd.conf file. 



Zend Platform for i5/OS User Guide  

142 

Note:  

The ZDS installation tries to identify your MaxClients value via the httpd.conf file that is the GUI’s 

default value, but this value can be changed after the installation, so it is important to verify that the 

value listed is correct.   

4. Click "Run" to run the Download Test.  

Viewing Download Test Results  

Once the tests have completed, you can view the test results both statistically and graphically.  

To view the results of the most recent Download Test:  

From the Test Download Tab click, ” Show Last Download Test Report”. The test report includes tables 

and graphs that display the Requests per Second and Number of Concurrent Requests for each test 

run.  

Note: 

The Download Test is a simulation. The most meaningful test results are obtained by running ZDS on 

the production server and monitoring the log file to see how many concurrent jobs the ZDS is 

handling. 

 

This completes the Performance Lifecycle chapter of the User Guide. In this section we have 

described the Performance Lifecycle and how implement the Zend Performance tools in creating 

optimal performance levels in an organization’s environment. 

Please refer to “Appendix C – Performance Lifecycle Check List” to read/print the Performance 

Lifecycle Check List that summarizes the performance optimization tasks. 

 

 



Zend Platform for i5/OS User Guide 

143 

PART V: INTEGRATION SERVER 
The Integration Server includes features that allow Zend Platform users to integrate with external 

technologies and environments: 

 

Zend Platform's Integration Server includes the following functionality: 

 Java Bridge - used to access Java based applications running in a Java application server. 

Platform’s Java Bridge offers significant performance and scalability advantages. Specifically, 

the memory consumption in the Platform PHP/Java Bridge is constant, regardless of the 

number of PHP sessions—unlike the equivalent solution, for example, in PHP 5. 

 Actuate BIRT Reporting Integration - used to extract reports from Java libraries for 

generating reports (Uses the Java Bridge). 

 SNMP Traps - An additional means of delivering Event information and parameters in a 

standardized way to a management console. The Event information includes details about 

occurrences (events) inside the system (For more information on SNMP, see Appendix G). 



Zend Platform for i5/OS User Guide  

144 

Java Bridge 

IN THIS CHAPTER… 

JAVA BRIDGE TAB  

ABOUT ZEND’S JAVA BRIDGE TECHNOLOGY  

OPERATING AND CONFIGURING ZEND PLATFORM’S JAVA BRIDGE 

THE JAVA BRIDGE USER INTERFACE  

USABILITY ISSUES 

COMMON TASKS 

The Zend Platform PHP/Java Bridge is a PHP module that connects the PHP object system with the 

Java object system. It can be used to access Java based applications running in a Java application 

server. 

Platform’s Java Bridge offers significant performance and scalability advantages. Specifically, the 

memory consumption in the Platform PHP/Java Bridge is constant, regardless of the number of PHP 

sessions—unlike the equivalent solution, for example, in PHP 5.  

The PHP/Java Bridge feature should interest three types of enterprises: 

 Companies that have investments in J2EE application servers can take advantage of PHP's 

Web-enablement capabilities, while preserving the utility of their Java investment.  

 PHP-centric companies that want to take advantage of J2EE services that are not present in 

scripting languages—specifically, PHP.  

 Companies that are not highly invested in J2EE and legacy systems can take advantage of 

Platform’s PHP/Java Bridge to interact with plain Java objects. 

 Companies that use or want to use Actuate reports. 

About Zend’s Java Bridge Technology 

Zend’s Java Middleware module (JavaMW) provides PHP connectivity to Java. The API is analogous to 

the standard PHP Java API (http://www.zend.com/manual/ref.java.php), however the implementation 

is different. JavaMW uses a stand-alone Java server process, which allows it to efficiently process Java 

requests. It adds stability and reliability to the PHP/Java connection. Unlike a standard PHP/Java 

connector, it uses a single Java virtual machine for all the requests, which makes memory and 

processor requirements significantly more modest while improving scalability.  

The diagram below illustrates Zend Platform’s Java Bridge technology: 

 

Figure 54 - Java Bridge Process Level 



Java Bridge 

145 

The Java Bridge Process Level diagram illustrates the following: 

Zend Platform Node  
Zend Platform Nodes include two bridging components: the PHP-side Bridge and the Java-side Bridge. 

Zend Platform Nodes operate as follows: 

1. A JVM (Java Virtual Machine) is installed first—before installing the Platform Node—on the 

machine that is to be set up with Zend Platform.  

For the Java Bridge to function, you must install a compatible version of JVM. Platform will 

find the compatible version automatically. Supported versions are SUN J2SE 1.4 or SUN 

J2SE1.5 (J2SE 5). 

2. Zend Platform then installs the two components required—the PHP-side and the Java-side—to 

create the Java Bridge. 

3. A PHP application can call a Java object from any Java library that resides on the Node. For 

example, JVM can be downloaded with all its component libraries. 

When a PHP application calls a Java object over the Java Bridge, a proxy for that object is created in 

PHP. In the diagram, the Java object is represented as a dark square; the proxy for that object in PHP 

is shown as a light square. 

J2EE Application Server  
The J2EE Application Server in its more advanced configuration, allows you to create a PHP/Java 

Bridge between a Zend Platform Node and an external J2EE Application Server. This type of 

configuration is typical of companies that have existing Java-based infrastructure. The J2EE 

Application Server operates as follow: 

1. A PHP application can call a Java object from a Java library external to Zend Platform.  

2. The Java-side Bridge component communicates with the J2EE Server. It finds objects in the 

J2EE Server, for example an EJB. The entire process is Java based. 

3. The PHP application then calls the Java object over the Java Bridge created between the two 

Platform bridging components.  

4. A proxy for that object is created in PHP. In the diagram, the Java object is represented as a 

dark square; the proxy for that object in PHP is shown as a light square. 



Zend Platform for i5/OS User Guide  

146 

The complete integration of Java and PHP is described in the following diagram: 

 

Figure 55 - Java Bridge System Level 

The Java Bridge System Level diagram illustrates the following about the network 

architecture: 

 Zend Platform Nodes - In order for a Zend Platform Node to function as a Java Bridge, it 

must have a properly functioning Java installation. Once Java is installed, Platform 

installation installs the required components for the Java Bridge, some of which are 

implemented in Java. 

 J2EE Server - The Java-based enterprise that adds Zend Platform will have its own 

application servers. A J2EE Server is shown in the diagram as part of the Front Office. It can 

communicate with any of the Platform Nodes that have Java installed on them and which are 

defined in Java as legitimate accounts. 

Added Value 

Zend Platform’s Java Bridge supports a PHP-Java integration that benefits enterprises on both the 

business and technical level. 

Business Level Benefits: 

 Companies with J2EE application servers can begin to realize the advantages PHP offers over 

other Web-enablement languages, including: shortened development time, shortened time-

to-market, lower TCO (Total Cost of Ownership), etc.  

 PHP-centric companies can take advantage of J2EE services that are not present in scripting 

languages.  



Java Bridge 

147 

Technical Level Benefits: 

 Platform’s PHP/Java Bridge provides the ability to interact with plain Java objects. 

 Platform’s Java Bridge operates without the overhead of a JVM for each Apache process. 

 Platform’s Java Bridge consumes a finite amount of memory, which is almost disproportional 

to the amount of activity that’s going through it. 

Operating and Configuring Zend Platform’s Java Bridge 
This section describes procedures for operating and configuring Zend Platform’s Java Bridge. 

Configuring Run-time: 

For running JavaMW, the following command can be used: 

java com.zend.javamw.JavaServer 

For correct execution, classpath should include javamw.jar file in the directory where JavaMW is 

installed, e.g.: 

UNIX, Linux, i5/OS and Mac <install_dir>/bin/javamw.jar  

Windows <install_dir>\bin\javamw.jar 

Java Status Page 

The Java Bridge tab provides status information about the Java servers connected to the network. The 

information displayed in the Java Status page, shows information about a selected server.  

To access the Java Bridge tab go to Integration | Java Bridge. 

The active buttons on the Java Status page are: 

 Stop - Shuts down the Java Bridge daemon. 

 Start/Restart - Restarts the Java Bridge daemon. 

 Refresh - Refreshes the page for the selected server. 

 Help - Opens the Online Help for the Platform Java Bridge. 

Windows Vista Note: 

The Start/Stop options are not available in Windows Vista. Use the services manager to Start and Stop 

services.  

The Java Status page includes information about: 

 Java Environment - The Java Environment includes the Java Version, Java Vendor, OS Name, 

OS Version, Class Path and Java Home 

 Bridge Statistics - Bridge Statistics information includes the Number of connections and 

Requests. 

• Number of connections - The accumulated number of processes holding a connection to the 

Java Bridge server (the full amount). 

• Number of Requests - The number of 'worker threads' available for processing requests to 

the Java server. 

Locating an Existing Java Version 
Zend Platform assumes that your existing Java is installed in the standard location: 

 /QOpenSys/usr/bin/java.  

If this is not the case, to use the Java Bridge you must relocate your Java to: 

/QOpenSys/usr/bin/java. 



Zend Platform for i5/OS User Guide  

148 

Note: 

The Zend Platform Java Bridge requires that you have SUN’s JRE 1.4 or later installed on your 

computer. While installing Zend Platform you were prompted to direct the installer to the JRE’s 

location. Therefore, you should already have JRE installed. If you did not choose to setup the Java 

Bridge in the installation process you can do so after the installation using the Setup Tool (from UNIX, 

Linux and Mac: platform_dir/bin/setup_tool.sh from i5/OS: GO ZENDPLAT/ZPMENU from 

Windows: Start | Programs | Zend Platform | Setup Tool). 

More information about JRE’s and the latest updates can be obtained from SUN Microsystems’s 

website: http://java.sun.com.  

Working with the Java Bridge User Interface 
To view the Java Status Page for a selected server: 

 

Figure 56 - Select Server to Configure 

1. Go to the Java Bridge tab and the “Select Server to Configure” dialog opens. 

2. Select a server from the list of servers in the Server Tree and click "OK". The Java Status 

Page opens for the selected server. 



Java Bridge 

149 

 

Figure 57 - Java Status Page 

Note: 

Statistical information is gathered on the Java server. Therefore, even after restarting the Web server, 

the statistics are maintained. This naturally does not apply to restarting the Java server, which will 

restart the statistics collection from zero. 

Using the command buttons provided on the Java Bridge user interface, you can stop the Java Bridge, 

start the Java Bridge, or refresh the Status Information shown on-screen, for the selected server.  

To stop the Java Bridge: 

1. Click "Stop". 

Platform opens an information screen that tells you that the Java Bridge was successfully 

stopped. 

2. Click "OK" to close the window. 

Platform closes the window and returns to the Java Bridge main screen. 

Configuring the Java Bridge 
Zend Platform’s Java module has two configuration parameters: 

 zend.javamw.threads - Specifies how many worker threads the server is using; allowing this 

number of concurrent requests to be executed. The default value is 20. 

 zend.javamw.port - Specifies the TCP port on which the server is listening. The default value 

is 10001. 

Example Script 

The following example is the shell script for running JavaMW (this script should be customized when 

necessary): 

export CLASSPATH=$CLASSPATH:`pwd`/javamw.jar 

java -Dzend.javamw.threads=20 -Dzend.javamw.port=10001 com.zend.javamw.JavaServer 



Zend Platform for i5/OS User Guide  

150 

Note: 

Add other entries into CLASSPATH if you use non-standard Java packages.  

PHP Configuration 

The PHP module uses the following configuration directives: 

 java.server_port - Specifies the TCP port on which the server is listening. The default value is 

10001.  

Note:  

This must be the same as zend.javamw.port for the server. 

 Java.ints_are_longs - converts PHP’s integer to Java’s java.lang.Long. By default and if this 

option is off, the PHP’s integers are converted to java.lang.Integer. 

Common Tasks 

This section describes some of the common uses for the Zend Platform Java Bridge. The usage 

scenarios and examples discussed here provide a framework for the Java Bridge’s uses, rather than a 

complete picture. Real world experience indicates that companies are finding more and more 

applications for the Java Bridge, beyond what was initially anticipated. 

Usage Scenarios 
There are two usage scenarios that describe the most common applications for Zend Platform’s 

PHP/Java Bridge: 

 Integration with Existing Java Infrastructure — PHP is a fully featured scripting language 

engineered to cover virtually all of an enterprise’s requirements. At the same time, many 

enterprises have a long history of application development in Java. Platform’s Java Bridge 

enables enterprises to keep on using their Java infrastructure —applications, databases, 

business logic, and various Java servers (WebLogic, JBoss, Oracle Application Server, etc.)  

 Accessing Java Language and Architecture — Some enterprises require the full set of PHP’s 

capabilities, yet have a specific need for select Java based applications. SIP signaling in the 

communications industry or JDBC for creating connectivity to SQL databases are two 

examples of impressive, industry specific products. Platform’s Java Bridge enables 

enterprises to adopt a PHP standard and to use their preferred Java based applications. 

Activities 
This section describes two sample activities that indicate some of what you can do with Platform’s 

PHP/Java Bridge. In the sample activities, it is important to differentiate between Java and J2EE. The 

difference will impact on architecture, and in turn, on the script code. 

The important differences are: 

 Java is a programming language. Java applications created in Java for the enterprise are not 

bound to a specific framework. Therefore, it is possible and perhaps preferable for an 

enterprise to relocate code libraries to a Zend Platform node. 

 J2EE is a structured framework for application scripts developed for J2EE. It is preferable that 

J2EE servers be left intact. (See the Zend Platform System Diagram above.) 



Java Bridge 

151 

Example 1: Typical Code 

The code sample below is a functional example—you can run it! The example demonstrates the 

interaction between the PHP application and Java objects that occurs in the Java Bridge 

implementation. 

<? 

// create Java object 

  $formatter = new Java("java.text.SimpleDateFormat", 

                        "EEEE, MMMM dd, yyyy 'at' h:mm:ss a zzzz"); 

  // Print date through the object 

  print $formatter->format(new Java("java.util.Date"))."\n"; 

  // You can also access Java system classes 

  $system = new Java("java.lang.System");   

  print $system."\n"; // will use toString in PHP5 

  print "Java version=".$system->getProperty("java.version")." <br>\n"; 

  print "Java vendor=".$system->getProperty("java.vendor")." <p>\n\n"; 

  print "OS=".$system->getProperty("os.name")." ". 

              $system->getProperty("os.version")." on ". 

              $system->getProperty("os.arch")." <br>\n"; 

?> 

The example code can be understood as follows: 

1. The code example is written in PHP and forms part of a PHP Web application. 

2. The PHP code creates the Java object—"java.lang.System"—which is the PHP proxy. 

3. The purpose of the PHP code is to print the date and system information; however, it does so 

through the Java object. 

Example 2: A Case Study Java Bridge Performance 

The Forever Times newspaper maintains a PHP-based website—let’s call it ForeverOnline.com. The 

newspaper has been searching for a real-time Stock Ticker application to add to their already 

successful and heavily visited website. The Forever Times Newspaper feels that real-time financial 

information is the one thing their web site is lacking.  

Forever Times believes they have found exactly the Stock Ticker application they need. The 

application provides up-to-date quotations from all the major markets, currency rates, and even links 

to some of the local exchanges. However, the application is written in Java and uses existing Java 

libraries.  

Forever Times realizes that a PHP based Web implementation that handles Java requests—a Java 

Bridge—is their best bet. At the same time, they are concerned that the performance of their Website 

remains optimal. To Forever Times’ horror, in testing the new application, they found that loading the 

site with user-requests for the stock ticker slows down the performance of the whole Website.   

The following code example illustrates how Platform’s Java Bridge applies to this business scenario 

and others like it: 

<? 

// create Java object 

$stock = new Java("com.ticker.JavaStock"); 

// call the object 

$news = $stock->get_news($_GET['ticker']); 

// display results 



Zend Platform for i5/OS User Guide  

152 

foreach($news as $news_item) { 

print "$news_item<br>\n"; 

} 

?>  

The example code can be understood as follows: 

 The code example is written in PHP and forms part of a PHP Web application. 

 The PHP code creates the Java object—"com.ticker.JavaStock"—which is the PHP proxy. 

 Requests come into the PHP based Website – ForeverOnline.com – which then references the 

Stock Ticker application.  

 Stock Ticker references a custom object— get_news—in the JVM library.  This is all in native 

Java. 

 The PHP code then outputs the results on the Website. 

The Typical Java Bridge Implementation and the Zend Platform’s Java Bridge Implementation 

diagrams below show how Forever Times’ concern about performance is addressed, through the Zend 

Platform Java Bridge architecture. The diagrams focus on how problems in scalability arise in a typical 

Java Bridge Implementation. 

 

Figure 58 - Typical Java Bridge Implementation 

Zend Platform’s Java Bridge Implementation diagram shows how scalability issues are addressed in 

the Zend Platform Java Bridge. 



Java Bridge 

153 

 

Figure 59 - Zend Platform’s Java Bridge Implementation 

Note:  

While the single JVM constitutes a single point of failure, the fact is Zend’s PHP-Java connection is the 

most robust on the market. Failures in systems of this type generally tend to occur when the Java 

Server is overloaded, rather than as a result of glitches in the applications. Zend Platform’s system 

architecture insures performance by diminishing overhead. However, in the event of failure, the Java 

Bridge supports a Restart feature that makes monitoring the status of the Java Server and restarting 

quick and simple. One last point: if the failure was caused by a glitch in the application, the same 

thing would most likely occur in each of the JVMs in the non-Zend system! 

Example 3: Case Study in Management Integration 

A company called FlowerPwr.com, sells flowers over the Internet. They are a successful East coast 

based firm that has an aggressive management profile. They are currently in the process of acquiring 

a West coast competitor—let’s call it Yourflowers.com—that provides a similar service. 

FlowerPwr.com has its own website, and its various enterprise applications were written in PHP. 

Yourflowers.com has its own Website, however all its applications are Java based and were developed 

for J2EE. They have their own J2EE application server. FlowerPwr.com needs to begin operating as an 

integrated commercial entity as soon as possible in a way that conceals the fact that the companies 

have merged. 

Platform’s Java Bridge offers a solution. Using Zend Platform, FlowerPwr.com can create a common 

portal in PHP. The company can leave Java up and running and take full advantage of their 

acquisition’s existing Java services. FlowerPwr.com can do this over an existing portal using PHP.  



Zend Platform for i5/OS User Guide  

154 

The following code example illustrates how Platform’s Java Bridge can apply to this business scenario 

and others like it: 

<? 

// EJB configuration for JBoss. Other servers may need other settings. 

// Note that CLASSPATH should contain these classes 

$envt = array( 

"java.naming.factory.initial" => "org.jnp.interfaces.NamingContextFactory", 

"java.naming.factory.url.pkgs" => "org.jboss.naming:org.jnp.interfaces", 

"java.naming.provider.url" => " jnp://yourflowers.com:1099"); 

$ctx = new Java("javax.naming.InitialContext", $envt); 

// Try to find the object  

$obj = $ctx->lookup("YourflowersBean"); 

// here we find an object - no error handling in this example 

$rmi = new Java("javax.rmi.PortableRemoteObject"); 

$home = $rmi->narrow($obj, new Java("com.yourflowers.StoreHome"));  

// $hw is our bean object 

$store = $home->create(); 

// add an order to the bean 

$store->place_order($_GET['client_id'], $_GET['item_id']); 

print "Order placed.<br>Current shopping cart: <br>"; 

// get shopping cart data from the bean 

$cart = $store->get_cart($_GET['client_id']); 

foreach($cart as $item) { 

print "$item['name']: $item['count'] at $item['price']<br>\n"; 

} 

// release the object 

$store->remove(); 

?> 

The example code can be understood as follows: 

1. The code example is written in PHP and forms part of a PHP Web application. 

2. The PHP application first initializes an operation with the EJB, located at a specific URL that 

has the name: “jnp://yourflowers.com:1099.” 

3. The code then specifies the bean—YourflowersBean—that the application will look for.  

4. Next, the bean object is returned from the EJB server. 

5. The application then calls methods—in this case, the Java application includes two functions: 

• place_order receiving two numbers — client ID and the item ID to add to shopping 

cart 

• get_cart receiving one number — client ID and returning the list of the items placed 

in the shopping cart so far. 

After script execution the referenced class may be disposed. 



Java Bridge 

155 

Usability Issues 

The Java Bridge’s PHP 4 module has a number of usability issues compared to native Java code, which 

stem from the limitations imposed by the PHP 4 language. Most of these limitations do not exist in 

PHP 5 and those that do will be mentioned as such. 

Chain Functions Call 

In pure Java, you can program the following chain function: 

result = object.Method1().Method2().Method3(); 

In this example, the result of one method becomes the object for another method. PHP 4’s Java 

module, however, does not allow you to write a chain function in a similar way, as per example: 

$result = $java_object->Method1()->Method2()->Method3(); 

This is due to the fact that PHP 4 disallows chaining method calls. Instead, a chain function must be 

expressed as follows: 

$result1 =  $java_object->Method1(); 

$result2 = $result1->Method2(); 

$result = $result2->Method3(); 

Note:  

In PHP 5, you can use chaining. 

Exceptions 
Since PHP 4 has no concept of exception, you may not include Java exceptions in your PHP code. 

However, you can use functions to deal with exceptions. 

java_exception_get: 

http://www.zend.com/manual/function.java-last-exception-get.php 

java_last_exception_clear: 

http://www.zend.com/manual/function.java-last-exception-clear.php 

PHP 5 has a concept of exceptions and therefore can handle Java exceptions and translate them into 

PHP exceptions.  

The following examples display the different exception scenarios and what they look like: 

How Exceptions Work: 

In this example exceptions are inherited from an exception class. 

<? 

try { 

  $stack=new Java("java.util.Stack"); 

  $stack->push(1); 

  $result = $stack->pop(); 

  print "$result\n"; 

  $result=$stack->pop(); 

} catch(Exception $ex) { 

  print "Exception in pop: "; 

  print $ex->getCause()->toString(); 

  print "\n"; 

} 

?> 



Zend Platform for i5/OS User Guide  

156 

Caught Exceptions: 

This example shows what an exception looks like when a Java Code exception is caught. This is an 

example of a typical exception that will appear instead of the expected PHP output when specified in 

the code i.e using print_r ($exception) or var_dump ($exception). 

JavaException Object 

( 

    [message:protected] => Java Exception java.util.EmptyStackException: 

java.util.EmptyStackException 

        at java.util.Stack.peek(Stack.java:79) 

        at java.util.Stack.pop(Stack.java:61) 

    [string:private] => 

    [code:protected] => 0 

    [file:protected] => /vector.php 

    [line:protected] => 7 

    [trace:private] => Array 

        ( 

            [0] => Array 

                ( 

                    [file] => /vector.php 

                    [line] => 7 

                    [function] => pop 

                    [class] => java.util.Stack 

                    [type] => -> 

                    [args] => Array 

                        ( 

                        ) 

                ) 

        ) 

    [javaException] => java.util.EmptyStackException Object 

)  

Uncaught Exceptions: 

Uncaught exceptions are also reported but because they lack an immediate relation to a specific 

exception class they are less detailed and can only indicate basic details regarding the occurrence of 

an exception. This type of exception typically appears in your error log or wherever you have defined 

your php.ini to store errors. 

Note: 

Please refer to the PHP manual for more information regarding the php.ini eror reporting definitions. 

Fatal error: Uncaught exception 'JavaException' with message 'Java  

Exception java.util.EmptyStackException: 

java.util.EmptyStackException 

        at java.util.Stack.peek(Stack.java:79) 

        at java.util.Stack.pop(Stack.java:61) 

' in /vector.php:7 

Stack trace: 

#0 /vector.php(7): java.util.Stack->pop() 

#1 {main} 

  thrown in /vector.php on line 7 



Java Bridge 

157 

Java Array/Hashtable Objects 
In PHP, arrays and hashtables are used interchangeably. This is because in PHP hashtables are 

indexed by integers or strings—not by objects. In Java, the key and value must be objects to be 

associated, so primitive types have to be converted to objects first, before parsing. 

In Zend Platform’s Java interface, if a method returns array/hashtable, it is immediately translated 

into a PHP native array/hashtable type. This means that if you want to work with a Java array/hash 

from PHP you cannot preserve it as a Java object. Of course, the contents are preserved, but the 

object identity is lost. In such a case, when an array/hash is returned, you will lose the ability to use 

Java methods since the array/hash loses the object identity and becomes a regular PHP array. 

There are several ways to handle Java arrays and hashtable descendants. The following example 

shows a possible scenario of how Java arrays and hashtable descendants can be converted into PHP 

arrays by splitting the class pattern method and returning an array of strings which is then converted 

into a PHP array as follows: 

<? 

$exp = new Java("java.util.regex.Pattern"); 

$p = $exp->compile(":+"); // Create new patten object  

$arr = $p->split("a::b:c:::d:e"); // Use pattern to split string into array 

print_r($arr); 

?> 

To deal with Array/Hashtable objects originating in Java: 

Implement the code dealing with the array in Java and then call it from PHP, or encapsulate the object 

in a different class. 

Iterators 
Iterators are not handled by the Java Bridge in any special way and they are treated like any other 

Java object. 

 

This completes the Java Bridge chapter of the User Guide. In this section we have described how 

provide and configure Zend Platform in order to obtain interoperability with other existing legacy or 

backend applications written in Java. 

 



Zend Platform for i5/OS User Guide  

158 

BIRT Reports 

INSIDE BIRT REPORTS 

ABOUT BIRT REPORTS 

THE BIRT REPORTS TAB 

SETTING-UP THE BIRT REPORT ENGINE 

BIRT APIS 

ZEND PLATFORM BIRT REPORT EXAMPLES 

Advanced reporting capabilities, have been integrated into Zend Platform, to provide enterprise users 

with expandable reporting functionality. Actuate's reporting application is the chosen application. 

Together with Zend Platform's Java Bridge it can extract reports from Java libraries and generate 

reports on any information. This solution is essentially a PHP API to the Actuate BIRT 2.0 run time 

environment that supports both PHP 4 and PHP 5.  

To access the BIRT Reports tab go to: Integration | BIRT Reports.  

About BIRT Reports 

The BIRT reporting framework was developed by Actuate as a project under the eclipse foundation. 

The BIRT reporting system is a Java reporting tool for building and publishing reports against data 

sources ranging from typical business SQL databases, to XML data sources, to in-memory Java 

objects. 

Types of reports that can be generated:  

 Lists that include sorts, groups, totals, top N reports, averages and summaries  

 Statements, invoices, documents, letters, forms and other business correspondence  

 Charts including pies, lines, bars, gauges and many more formats 

Actuate BIRT reports can combine text, images, rules, charts, tables and other elements in a single 

document or web page. Actuate BIRT also provides extensive support for the language needs of global 

application deployment. Using Actuate BIRT, a single report can display strings in various languages 

and can adapt date and numeric formatting and item widths to global languages. 

Using BIRT reports with Zend Platform. 

 

Zend Platform has included Actuate’s report run-time environment allowing Zend Platform users to 

generate and run BIRT reports, directly form Platform Administration. In addition, Zend Studio XE 

includes the BIRT reports design interface (See the Zend Studio Online Help for more about creating 

BIRT reports). Both components complement each other in providing an overall solution for 

developing and creating business intelligence reports. 

The BIRT Reports Tab 

The BIRT Reports tab, is a BIRT report demo page. 

Through this Tab, users can: 

 View examples of BIRT reports.  

 View exampled of the actual code. 



BIRT Reports 

159 

Report Examples 

The BIRT Reports tab includes four different examples of reports. These reports demonstrate different 

types of reports that can be created. To view the generated output of a report click "Render this 

code...".  

 

The type of output you will see, depends on the output type defined in the code. The options are PDF 

or HTML (For more about creating reports see BIRT API) 

Report Code 

When selecting a report, the display beneath the report selection section changes to show the actual 

code of the selected report. This provides users with a detailed example of the makeup of reports 

including the Rendering option that allows users to also view the code's output. 

 

Setting-Up the BIRT Report Engine 

The Zend Platform installation script includes all the necessary components for rendering the BIRT use 

cases directly from Platform Administration. These use cases demonstrate the reporting capabilities in 

terms output types and the necessary functions used in order to gather and render the reports.  

Assuming the Java Bridge component has already been setup, the BIRT use cases will work out-of-

the-box. The Java Bridge component is needed in order to support the interaction between the PHP 

scripts and the BIRT reporting tool written in Java. 

If while installing Zend Platform, the option to setup the Java Bridge was not selected, the Setup Tool 

can be deployed to setup the Java Bridge. 

Using the Setup Tool to Setup the Java Bridge: 

Access the Setup Tool, from UNIX, Linux and Mac: platform_dir/bin/setup_tool.sh from i5/OS: GO 

ZENDPLAT/ZPMENU from Windows: Start | Programs | Zend Platform | Setup Tool. 

Note: 

The Zend Platform Java Bridge requires that you have SUN’s JRE 1.4 or later installed on your 

computer. More information about JRE’s and the latest updates can be obtained from SUN 

Microsystems’s website: http://java.sun.com.  

To enable the interaction between Zend Platform and the BIRT reporting tool, first activate the Java 

Bridge, by going to: Integration | Java Bridge and click “Start”. 

Zend Platform BIRT Report Examples 

The following are the report examples set in the BIRT Reports Tab: 

Note: 

Please Refer to the chapter "APIs and Directives for more details about the BIRT APIs 



Zend Platform for i5/OS User Guide  

160 

Sales Invoice (html)  

Prints an invoice for the selected order, including customer and invoice details and products ordered. 

Demonstrates use of a parameter to select the order to invoice and expressions for several calculated 

fields, including discount and order total. Uses expression to build customer address string and 

illustrates suppression of nulls in database fields with javascript function replace. Also shows image 

inclusion and sophisticated use of grids and tables to organize report content. Finally, the report 

makes use of styles to simplify maintenance and achieve a consistent look.  

<?php 

 

2   // include Zend Birt report design API 

 

3   require_once('Zend/Birt_Report/Zend_Birt_Report_Design.php'); 

 

4    

 

5   // create report design object from rptdesign file 

 

6   $birt = new Zend_Birt_Report_Design(dirname(__FILE__) . '/usecase1.rptdesign'); 

 

7    

 

8   // set parameter sample, in this case: 

 

9   // show only order number 10101 

 

10   $birt->setParameter('OrderNumber','10102'); 

 

11    

 

12   // "BIRT_TMP_DIR" represent a path to writable directory, while 

"birtImage.php?image=" is 

 

13   // a php script that display the image from its original location 

 

14   $birt->setImageConfiguration(BIRT_TMP_DIR, 'birtImage.php?image='); 

 

15    

 

16   // render a report. 

 

17   // BIRT_REPORT_FORMAT_HTML - render an html report 

 

18   echo $birt->renderReport(BIRT_REPORT_FORMAT_HTML, false); 

 

19   ?>   



BIRT Reports 

161 

Top Selling Products (embedded html)  

Displays a pie chart showing revenue by product line. Lists the top selling products, sorted by 

revenue. Demonstrates use of a chart and sorting a result set. Also shows image inclusion and use of 

grid and tables to organize report content. Finally, the report makes use of styles to simplify 

maintenance and achieve a consistent look.  

 <html> 

 

2   <head> 

 

3       <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> 

 

4       <title>Zend birt sample</title> 

 

5   </head> 

 

6   <body> 

 

7       <div style="width:600px;margin:0 auto;"> 

 

8       <?php 

 

9       // include Zend Birt report design API 

 

10       require_once('Zend/Birt_Report/Zend_Birt_Report_Design.php'); 

 

11    

 

12       // create report design object from rptdesign file 

 

13       $birt = new Zend_Birt_Report_Design(dirname(__FILE__) . 

'/usecase2.rptdesign'); 

 

14        

 

15       // "$birt_tmp_directory" represent a path to writable directory, while 

"birtImage.php?image=" is 

 

16       // a php script that display the image from its original location 

 

17       $birt->setImageConfiguration(BIRT_TMP_DIR, 'birtImage.php?image='); 

 

18        

 

19        

 

20       // render html report embedded in html page 

 

21       echo $birt->renderReport(BIRT_REPORT_FORMAT_HTML, true); 

 



Zend Platform for i5/OS User Guide  

162 

22       ?> 

 

23       </div> 

 

24   </body> 

 

25   </html>   

Product Catalog (PDF)  

Prints the Classic Models product catalog, grouped by product category. Provides product name, cost 

and description. Demonstrates one level grouping and using a grid within a table row to structure 

spacing. Also shows image inclusion and use of the tag in text item to include the content of a 

database column. Finally, the report makes use of styles to simplify maintenance and achieve a 

consistent look.  

 <?php 

 

2   // include Zend Birt report design API 

 

3   require_once('Zend/Birt_Report/Zend_Birt_Report_Design.php'); 

 

4    

 

5   // create report design object from rptdesign file 

 

6   $birt = new Zend_Birt_Report_Design(dirname(__FILE__) . '/usecase3.rptdesign'); 

 

7    

 

8    

 

9   // render report to PDF file and save it on a temporary folder 

 

10   if (!$birt->renderReportToFile(BIRT_REPORT_FORMAT_PDF, true, BIRT_TMP_DIR . 

'/temp_report.pdf')) { 

 

11       // display error if renering return false 

 

12       echo $birt->getError();     

 

13   } else { 

 

14       // send pdf file to browser 

 

15       // if function for zend_send_file 

 

16       zend_send_file(BIRT_TMP_DIR . '/temp_report.pdf', 'pdf'); 

 

17   } 

 

18   ?>   



BIRT Reports 

163 

Product Catalog (using caching)  

Prints the Classic Models product catalog, grouped by product category. Provides product name, cost 

and description. Demonstrates one level grouping and using a grid within a table row to structure 

spacing. Also shows image inclusion and use of the tag in text item to include the content of a 

database column. Finally, the report makes use of styles to simplify maintenance and achieve a 

consistent look.  

<?php 

 

2   // include Zend Birt report design API 

 

3   require_once('Zend/Birt_Report/Zend_Birt_Report_Design.php'); 

 

4   // include Zend Birt report document API 

 

5   require_once('Zend/Birt_Report/Zend_Birt_Report_Document.php'); 

 

6    

 

7   // create report design object from rptdesign file 

 

8   $birt = new Zend_Birt_Report_Design(dirname(__FILE__) . '/usecase4.rptdesign'); 

 

9    

 

10   // caching a report using report document file 

 

11   // savng rptdoc file to a temporary folder 

 

12   $rptdoc_cache_file = BIRT_TMP_DIR . '/temp.rptdoc'; 

 

13   if (!file_exists($rptdoc_file)) { 

 

14       $birt_doc = $birt->generateReportDocument($rptdoc_cache_file); 

 

15   } else { 

 

16       $birt_doc = new Zend_Birt_Report_Document($rptdoc_cache_file); 

 

17   } 

 

18   if(!$birt_doc) { 

 

19       die($birt->getError()); 

 

20   } 

 

21    

 

22   // "$birt_tmp_directory" represent a path to writable directory, while 

"birtImage.php?image=" is 



Zend Platform for i5/OS User Guide  

164 

 

23   // a PHP script that displays the image from its original location 

 

24   $birt_doc->setImageConfiguration(BIRT_TMP_DIR, 'birtImage.php?image='); 

 

25    

 

26   // rendering report from cache (rptdoc file) to output 

 

27   $birt_doc->renderReportToOutput(BIRT_REPORT_FORMAT_HTML,false); 

 

28   ?>   



Zend Platform for i5/OS User Guide 

165 

PART VI: REFERENCE INFORMATION 

Zend Platform APIs and Directives 

IN THIS CHAPTER… 

ZEND PLATFORM APIS:  

ACCELERATOR FUNCTIONS  

OUTPUT CACHE FUNCTIONS  

MONITOR FUNCTIONS  

ZDS (ZEND DOWNLOAD SERVER) 

JOB QUEUE 

BIRT REPORTS 

ZEND PLATFORM DIRECTIVES:  

ACCELERATOR DIRECTIVES  

MONITOR DIRECTIVES  

PLATFORM ADMINISTRATION DIRECTIVES  

COLLECTOR CENTER DIRECTIVES  

DEBUGGER DIRECTIVES  

             ZDS DIRECTIVES 

This chapter is a reference chapter for Zend Platform APIs and directives.  

Zend Platform APIs 

Accelerator Functions 

accelerator_set_status 

void accelerator_set_status(bool status) 

 Description: Disable/enable the Code Acceleration functionality at run time.  

 Return Values: none  

 Parameters: status - if false, Acceleration is disabled, if true - enabled  

Output Cache Functions 

output_cache_disable()  

 Description: Disables output caching for currently running scripts.  

 Return Values: none  

 Parameters: none  

output_cache_disable_compression()  

 Description: Does not allow the cache to perform compression on the output of the current 

page. This output will not be compressed, even if the global settings would normally allow 

compression on files of this type.  

 Return Values: none  

 Parameters: none  

output_cache_fetch()  

string output_cache_fetch(string key, string function, int lifetime) 



Zend Platform for i5/OS User Guide  

166 

 Description: Gets the code’s return value from the cache if it is there, if not - run function 

and cache the value.  

 Return Values: function's return  

 Parameters: key - cache key, function - PHP expression, lifetime - data lifetime in cache 

(seconds)  

output_cache_output()  

string output_cache_output(string key, string function, int lifetime) 

 Description: If they cache for the key exists, output it, otherwise capture expression output, 

cache and pass it out.  

 Return Values: expression output  

 Parameters: key - cache key, function - PHP expression, lifetime - data lifetime in cache 

(seconds)  

output_cache_remove  

bool output_cache_remove(string filename) 

 Description: Removes all the cache data for the given filename.  

 Return Values: true if OK, false if something went wrong  

 Parameters: filename - full script path on local file system  

output_cache_remove_url  

bool output_cache_remove_url(string url) 

 Description: Remove cache data for the script with given URL (all dependent data is 

removed)  

 Return Values: true if OK  

 Parameters: url - the relative path for the script  

output_cache_remove_key  

bool output_cache_remove_key(string key) 

 Description: Remove item from PHP API cache by key  

 Return Values: true if OK  

 Parameters: key - cache key as given to output_cache_get/output_cache_put  

output_cache_put  

bool output_cache_put(string key, mixed data) 

 Description: Puts data in cache according to the assigned key.  

 Return Values: true if OK  

 Parameters: key - cache key, data - cached data (must not contain objects or resources)  

output_cache_get  

mixed output_cache_get(string key, int lifetime) 

 Description: Gets cached data according to the assigned key.  

 Return Values: cached data if cache exists, false otherwise  



Zend Platform APIs and Directives 

167 

 Parameters: key - cache key, lifetime - cache validity time (seconds)  

output_cache_exists  

bool output_cache_exists(string key, int lifetime) 

 Description: If data for assigned key exists, this function outputs it and returns a value of 

true. If not, it starts capturing the output. To be used in pair with output_cache_stop.  

 Return Values: true if cached data exists  

 Parameters: key - cache key, lifetime - cache data validity time (seconds)  

output_cache_stop 

 Description: If output was captured by output_cache_exists, this function stops the output 

capture and stores the data under the key that was given to output_cache_exists().  

Monitor Functions 

monitor_pass_error 

void monitor_pass_error(integer $errno, string $errstr, string $errfile, integer $errline) 

 Description: Should be called from a custom error handler to pass the error to the monitor. 

The user function needs to accept two parameters: the error code, and a string describing 

the error. Then there are two optional parameters that may be supplied: the filename in 

which the error occurred and the line number in which the error occurred.  

monitor_set_aggregation_hint 

void monitor_set_aggregation_hint(string $hint) 

 Description: Limited in the database to 255 chars, this API is a global variable that can be set 

anywhere and in any hierarchy. The purpose of this API is to incorporate locations of 

occurrences in the script. This API is used when there are events that require the location in 

the script for diagnosing the reason behind the event occurring. For example: Global Events 

require the application that generated the event. Adding the Hint API can assist in the 

identification process. This string that is supplied by the user to differentiate between pages 

that have the same URL but different parameters. 

 Return Values: If the user did not supply a hint the default hint is an empty string.   

 Parameters: $hint 

monitor_custom_event 

void monitor_custom_event(string $class, string $text[, integer $severe, mixed $user_data]) 

 Description: Custom Events are used to generate an event whenever the API function 

monitor_custom_event() is called from the PHP script. This event type enables the generation 

of an event on occurrences that are not necessarily built-in Zend Platform events (error and 

performance issues). Custom Events are used whenever you decide that it is significant to 

generate an event in a certain situation. Each event type is given a name for easy 

identification ($type). 

 Parameters: $class – helps to define several types of custom events. This description will be 

showed in the PHP Intelligence, Event List and in the Event Details (report). $text - error text 

used to describe the reason for the event. This text will appear in the Event Details. $severe 

- the severity level of the triggered event, default value is Severe. $user_data - adds a PHP 



Zend Platform for i5/OS User Guide  

168 

variable that will be viewed in the Event Details screen (in Event Context-> Variables->User 

Defined). This forms the stored Event Context (similar to the information obtained in a PHP 

error event). 

register_event_handler 

boolean register_event_handler($event_handler_func 

[,$handler_register_name],$event_type_mask]) 

 Description: Allow you to register a user function as an event handler. When a monitor event 

is triggered all the user event handler are called and the return value from the handler is 

saved in an array keyed by the name the event handler was registered under. The event 

handlers results array is saved in the event_extra_data table.  

 Return Value: TRUE on success and FALSE if an error occurs.  

 Parameters: The first argument is a callback function that will be call when the event is 

triggered, object methods may also be invoked statically using this function by passing array 

($objectname, $methodname) to the function parameter. The second (optional) argument is 

name this function is registered under - if none is supplied, the function will be registered 

under it's own name. The third (optional) parameter is a mask of event types that the 

handler should be called on by default it's set to MONITOR_EVENT_ALL.  

unregister_event_handler 

boolean unregister_event_handler(string handler_name) 

 Description: Allow you to un-register an event handler.  

 Return Value: TRUE on success and FALSE if no handler we registered under the given name.  

 Parameters: string handler_name - the name you registered with the handler you now wish 

to un-register.  

ZDS (Zend Download Server)  

zend_send_file 

bool zend_send_file(string filename[, string mime_type]) 

 Description: Send a file using ZDS  

 Return Value: FALSE if sending file failed, does not return otherwise  

 Parameters: filename - path to the file, mime_type - MIME type of the file, if omitted, taken 

from configured MIME types file  

Note:  

The ZDS is not currently supported in Windows. 



Zend Platform APIs and Directives 

169 

Java Bridge 

java_last_exception_get 

object java_last_exception_get() 

 Description: Return Java exception object for last exception  

 Product Version - Buran  

 Return Value: Java Exception object, if there was an exception, false otherwise  

java_last_exception_clear 

void java_last_exception_clear() 

 Description: Clear last Java exception object record.  

java_set_ignore_case 

void java_set_ignore_case(bool ignore) 

 Description: Set case sensitivity for Java calls.  

 Parameters: ignore - if set, Java attribute and method names would be resolved disregarding 

case. NOTE: this does not make any Java functions case insensitive, just things like $foo-

>bar and $foo->bar() would match Bar too.  

java_set_encoding 

array java_set_encoding(string encoding) 

 Description: Set encoding for strings received by Java from PHP. Default is UTF-8.  

java_throw_exceptions 

void java_throw_exceptions(int throw) 

 Description: Control if exceptions are thrown on Java exception. Only for PHP5.  

 Parameters: throw - If true, PHP exception is thrown when Java exception happens. If set to 

false, use java_last_exception_get() to check for exception.  

Job Queue 

A queue of job is described using the JobQueue class, when you want to manage a queue (or add 

more than one job to it) you should instantiate a JobQueue object.  

The JobQueue object enables several job control functions such as: add/remove/suspend/resume, and 

some manage/info queue functions like: getJobsInQueue, getHistory, getStatistics etc.  

A job is described by a Job class, whenever you want to add/update a job you can handle the Job 

object using the Job methods.  

After a job is in the queue, you can retrieve it to change remove or suspend the Job by using the job 

id (the job id is assigned when a Job is added to the queue or by querying the jobs in the queue)  

To add one job to a queue, for simplicity of usage, you can create the Job object (with it's required 

attributes) and then add the job directly from the Job object (without instantiating the JobQueue 

object), using the Job::addJob() function.  

To change a Job's attributes, first get it from the queue (JobQueue::getJob() function), change the 

attributes and then update the queue with the changed Job object (JobQueue::updateJob() functions).  



Zend Platform for i5/OS User Guide  

170 

Global Functions and Constants  

Constants for Job statuses 

define('JOB_QUEUE_STATUS_SUCCESS', 1);   Job was processed and succeeded 

define('JOB_QUEUE_STATUS_WAITING', 2);          

 

Job is waiting to be processed (was not 

scheduled) 

define('JOB_QUEUE_STATUS_SUSPENDED', 3);   Job was suspended 

define('JOB_QUEUE_STATUS_SCHEDULED', 4);   Job is scheduled and waiting in queue 

define('JOB_QUEUE_STATUS_WAITING_PREDECESSOR', 

5);  

Job is waiting for it's predecessor to be 

completed 

define('JOB_QUEUE_STATUS_IN_PROCESS', 6);     Job is in process in Queue 

define('JOB_QUEUE_STATUS_EXECUTION_FAILED', 7); 

    

Job execution failed in the ZendEnabler 

define('JOB_QUEUE_STATUS_LOGICALLY_FAILED', 8); Job was processed and failed logically 

either because of job_fail command or 

script parse or fatal error  

Constants for different priorities of jobs 

define('JOB_QUEUE_PRIORITY_LOW', 0); 

define('JOB_QUEUE_PRIORITY_NORMAL', 1); 

define('JOB_QUEUE_PRIORITY_HIGH', 2); 

define('JOB_QUEUE_PRIORITY_URGENT', 3); 

Constants for saving global variable's bit mask 

define('JOB_QUEUE_SAVE_POST', 1); 

define('JOB_QUEUE_SAVE_GET', 2); 

define('JOB_QUEUE_SAVE_COOKIE', 4); 

define('JOB_QUEUE_SAVE_SESSION', 8); 

define('JOB_QUEUE_SAVE_RAW_POST', 16); 

define('JOB_QUEUE_SAVE_SERVER', 32); 

define('JOB_QUEUE_SAVE_FILES', 64); 

define('JOB_QUEUE_SAVE_ENV', 128); 

 

set_job_failed 

set_job_failed( $error_string ); 

 Description: Causes a job to fail logically. It can be used to indicate an error in the script 

logic (e.g. database connection problem). 

 Parameters: @param string $error_string the error string to display  

jobqueue_license_info 

jobqueue_license_info(); 

Description: returns an array containing following fields: 

 "license_ok" - whether license allows use of JobQueue 

 "expires" - license expiration date  



Zend Platform APIs and Directives 

171 

Queue Class 

class ZendAPI_Queue { 

var $_jobqueue_url; 

Queue Class Functions 

zendapi_queue($queue_url) {} 

Constructor for a job queue connection 

 @param string $jobqueue_url  - Full address where the queue is, in the form host:port 

 @return zendapi_queue object 

login($password, $application_id=null) {} 

Opens a connection to a job queue 

 @param string $password For authentication, password must be specified to connect to a 

queue 

 @param int $application_id Optional, if set, all subsequent calls to job related methods will 

use this application id (unless explicitly specified otherwise). I.e. When adding new job, 

unless this job already set an application id, the job will be assigned the queue application id 

 @return bool Success 

addJob(&$job) {} 

Insert a new job to the queue, the Job is passed by reference because  

its new job ID and status will be set in the Job object 

 @param Job $job The Job we want to insert to the queue (by ref.) 

 @return int The inserted job id 

getJob($job_id) {} 

Returns a Job object describing a job in the queue 

 @param int $job_id The job id 

 @return Job Object describing a job in the queue 

updateJob(&$job) {} 

Updates an existing job in the queue with it's new properties. If job doesn't exists,a new job will be 

added. Job is passed by reference and it's updated from the queue. 

 @param Job $job The Job object, the ID of the given job is the id of the job we try to update. 

 If the given Job doesn't have an assigned ID, a new job will be added 

 @return int The id of the updated job 

suspendJob($job_id) {} 

Removes a job from the queue 

 @param int|array $job_id The job id or array of job ids we want to remove from the queue 

 function removeJob($job_id) {} 

 Suspend a job in the queue (without removing it) 

 @param int|array $job_id The job id or array of job ids we want to suspend 

 @return bool Success/Failure 



Zend Platform for i5/OS User Guide  

172 

resumeJob($job_id) {} 

Resume a suspended job in the queue 

 @param int|array $job_id The job id or array of job ids we want to resume 

 @return bool Success/Failure (if the job wasn't suspended, the function will return false) 

requeueJob($job) {} 

Requeue failed job back to the queue. 

 @param job $job  job object to re-query 

 @return bool - true or false. 

getStatistics() {} 

returns job statistics 

 @return array with the following: 

• "total_complete_jobs" 

• "total_incomplete_jobs" 

• "average_time_in_queue"  [msec] 

• "average_waiting_time"   [sec] 

• "added_jobs_in_window" 

• "activated_jobs_in_window" 

• "completed_jobs_in_window" 

 moving window size can be set through the ini file 

isScriptExists($path) {} 

Returns whether a script exists in the document root 

 @param string $path relative script path 

 @return bool - TRUE if script exists in the document root FALSE otherwise 

isSuspend() {} 

Returns whether the queue is suspended 

 @return bool - TRUE if job is suspended FALSE otherwise 

getJobsInQueue($filter_options=null, $max_jobs=-1, $with_globals_and_output=false) {} 

Returns a list of jobs in the queue according to the options given in the filter_options parameter, 

doesn't return jobs in "final states" (failed, complete). If the application id is set for this queue, only 

jobs with this application id will be returned.  

 @param array $filter_options Array of optional filter options to filter the jobs we want to get 

from the queue. If not set, all jobs will be returned. Options can be: priority, application_id, 

name, status, recurring. 

 @param int max_jobs  Maximum jobs to retrive. Default is -1, getting all jobs available. 

 @param bool with_globals_and_output. Whether gets the global variables data and job 

output. 

 Default is false. 

 @return array. Jobs that satisfies filter_options. 



Zend Platform APIs and Directives 

173 

getNumOfJobsInQueue($filter_options=null) {} 

Returns a list of jobs in the queue according to the options given in the filter_options parameter 

If application id is set for this queue, only jobs with this application id will be returned 

 @param array $filter_options Array of optional filter options to filter the jobs we want to get 

from the queue. If not set, all jobs will be returned.Options can be: priority, application_id, 

host, name, status, recurring. 

 @return int. Number of jobs that satisfies filter_options. 

getAllhosts() {} 

Return all the hosts that jobs were submitted from. 

 @return array.  

getAllApplicationIDs() {} 

Return all the application ids exists in queue. 

 @return array. 

getHistoricJobs($status, $start_time, $end_time, $index, $count, &$total) {} 

Return finished jobs (either failed or successes) between time range allowing paging. 

Jobs are sorted by job id descending. 

 @param int $status. Filter to jobs by status, 1-success, 0-failed either logical or execution. 

 @param UNIX timestamp $start_time. Get only jobs finished after $start_time. 

 @param UNIX timestamp $end_time. Get only jobs finished before $end_time. 

 @param int $index. Get jobs starting from the $index-th place. 

 @param int $count. Get only $count jobs. 

 @param int $total. Pass by reference. Return the total number of jobs satisfied the query 

criteria.  

 @return array of jobs. 

suspendQueue() {} 

Suspends queue operation 

 @return bool - TRUE if successful FALSE otherwise 

resumeQueue() {} 

Resumes queue operation 

 @return bool - TRUE if successful FALSE otherwise. 

getLastError() {} 

Returns a description of the last error that occurred in the queue object. After every method invoked 

an error string describing the error is stored in the queue object. 

 @return string. 

setMaxHistoryTime() {}  

Sets a new maximum time for keeping historic jobs. 

 @return bool - TRUE if successful FALSE otherwise 



Zend Platform for i5/OS User Guide  

174 

Job Class  

This class describes a job in a queue 

In order to add/modify a job in the queue, a Job class must be created, retrieved and than saved in a 

queue or , a job can be added directly to a queue without creating an instant of a Queue object. 

class ZendAPI_Job { 

 

var $_id; 

 Description: Unique id of the Job in the job queue. 

 @var int 

var $_script; 

 Description: Full path of the script that this job calls when it's processed. 

 @var string 

var $_host; 

 Description: The host from where the job was submitted. 

 @var string 

var $_name; 

 Description: A short string describing the job. 

 @var string 

var $_output; 

 Description: The job output after executing. 

 @var string 

var $_status = JOB_QUEUE_STATUS_WAITING; 

 Description: The status of the job, by default, the job status is waiting to being executed. The 

status is determined by the queue and can not be modified by the user. 

 @var int 

var $_application_id = null; 

 Description: The application id of the job. If the application id is not set, this job may get an 

application id automatically from the queue (if the queue was assigned one). By default it is 

null (which indicates no application id is assigned). 

 @var string 

var $_priority = JOB_QUEUE_PRIORITY_NORMAL; 

 Description: The priority of the job, options are the priority constants. By default the priority 

is set to normal (JOB_QUEUE_PRIORITY_NORMAL). 

 @var int 



Zend Platform APIs and Directives 

175 

var $_user_variables = array(); 

 Description: An array holding all the variables that the user wants the job's script to have 

when it's called. 

 The structure is variable_name => variable_value i.e. if the user_variables array is 

array('my_var' => 8), when the script is called, a global variable called $my_var will have 

the int value of 8. By default, there are no variables that we want to add to the job's script. 

 @var array 

var $_global_variables = 0; 

 Description: A bit mask holding the global variables that the user want the job's script to 

have when it's called. 

 Options are prefixed with "JOB_QUEUE_SAVE_" and may be: 

POST|GET|COOKIE|SESSION|RAW_POST|SERVER|FILES|ENV. By default there are no global 

variables we want to add to the job's script i.e. In order to save the current GET and COOKIE 

global variables, this property should be JOB_QUEUE_SAVE_GET|JOB_QUEUE_SAVE_COOKIE 

(or the integer 6). In that case (of GET and COOKIE), when the job is added, the current 

$_GET and $_COOKIE variables should be saved, and when the job's script is called,those 

global variables should be populated. 

 @var int 

var $_predecessor = null; 

 Description: The job may have a dependency (another job that must be performed before 

this job). This property holds the id of the job that must be performed. If this variable is an 

array of integers, it means there are several jobs that must be performed before this job. By 

default there are no dependencies. 

 @var mixed (int|array) 

var $_scheduled_time = 0; 

 Description: The time that this job should be performed, this variables is the UNIX 

timestamp. If set to 0, it means that the job should be performed now (or at least as soon as 

possible). By default there is no scheduled time, which means we want to perform the job as 

soon as possible. 

 @var int 

var $_interval = 0; 

 Description: The job running frequency in seconds. The job should run every _internal 

seconds. This property only applies to recurrent jobs. By default, its value is 0 e.g. run it only 

once. 

 @var int 

var $_end_time = null; 

 Description: A UNIX timestamp of the last time this job should occur. If _interval was set, 

and _end_time was not, then this job will run forever. By default there is no end_time, so 

recurrent jobsl run forever. If the job is not recurrent (Occurs only once) then the job will run 

at most once. If the end_time has reached and the job was not yet executed, it will not run. 

 @var int 



Zend Platform for i5/OS User Guide  

176 

var $_preserved = 0; 

 Description: A bit that determines if the job can be deleted from history. When set, 

removeJob will not delete the job from history. 

 @var int 

function ZendAPI_Job($script) {} 

 Description: Instantiates a Job object, describing all the information and properties of a job. 

 @param script $script relative path (relative to document root supplied in the ini file) of the 

script this job should call when it's executing. 

 @return Job 

function addJobToQueue($jobqueue_url, $password) {} 

 Description: Adds the job to the specified queue (without instantiating a JobQueue object). 

This function should be used only when adding a single job, to insert more than one job 

and/or manipulate other jobs (or job tasks) create and use the JobQueue object. This 

function creates a new JobQueue and logs in to it (with the given parameters), adds this job 

and logs out 

 @param string $jobqueue_url Full address of the queue we want to connect to. 

 @param string $password For authentication, the queue password. 

 @return int The added job id or false on failure. 

function setJobPriority($priority) {} 

Description: Set a new priority to the job. 

@param int $priority, priority options are constants with the "JOB_QUEUE_PRIORITY_" prefix 

 

All properties SET functions 

function setJobName($name) {} 

function setScript($script) {} 

function setApplicationID($app_id) {} 

function setUserVariables($vars) {} 

function setGlobalVariables($vars) {} 

function setJobDependency($job_id) {} 

function setScheduledTime($timestamp) {} 

function setRecurrenceData($interval, $end_time=null) {} 

function setPreserved($preserved) 

 

function getProperties() {} 

 Description: Get the job properties. 

 @return array The same format of job options array as in the Job constructor. 

function getOutput() {} 

 Description: Get the job output. 

 @return An HTML representing the job output. 



Zend Platform APIs and Directives 

177 

All properties GET functions 

function getID() {} 

function getHost() {} 

function getScript() {} 

function getJobPriority() {} 

function getJobName() {} 

function getApplicationID() {} 

function getUserVariables() {} 

function getGlobalVariables() {} 

function getJobDependency() {} 

function getScheduledTime() {} 

function getInterval() {} 

function getEndTime() {} 

function getPreserved() {} 

 

function getJobStatus() {} 

 Description: Get the job’s current status. 

 If this job was created and not returned from a queue (using the JobQueue::GetJob() 

function), the function will return false. The status is one of the constants with the 

"JOB_QUEUE_STATUS_" prefix.E.g. job was performed and failed, job is waiting etc. 

 @return int 

function getTimeToNextRepeat() {} 

 Description: Get how many seconds until the next time the job will run.  

 If the job is not recurrence or it past its end time, then return false@return int 

function getLastPerformedStatus() {} 

 Description: For recurring jobs get the status of the last execution. For simple jobs, 

getLastPerformedStatus is equivalent to getJobStatus. Jobs that haven't been executed will 

return STATUS_WAITING. 

 @return int 

BIRT Reports 

APIs and Directives 

Zend has created a PHP API in PHP that uses the Java Bridge to communicate with BIRT classes and 

generate reports. 

In order to begin benefiting from the advanced reporting capabilities, the BIRT APIs have to be 

incorporated into the PHP application’s code. 

The Use Cases in Platform Administration provide a demonstration of how the APIs work and how to 

insert them in the code. These Use Cases are viewed from Integration | BIRT Reports. In the same 

page is a download option “Download BIRT API and Samples” this option is used to download the BIRT 

APIs.  



Zend Platform for i5/OS User Guide  

178 

To incorporate Zend BIRT APIs in PHP Applications: 

1. Download the BIRT API by clicking: “Download BIRT API and Samples” 

2. Extract the files into your PHP application’s directory 

3. Include these files to the project. 

Once the files are incorporated into your PHP application’s project the different APIs can be inserted 

into your code to generate various reports.  

The following is a detailed description of the BIRT API: 

The Zend_Birt Class is a base class for Zend_Birt_Report_Document and Zend_Birt_Report_Design. 

 Zend_Birt_Report_Design is used for creating reports from a design file 

 Zend_Birt_Report_Report is used for creating reports from report document. 

The Zend_Birt_Report_Design class, sets a design file in its constructor that can run to create a report 

document from a design file. The report's output can be rendered as a document in PDF or HTML 

format. Or the report document can be saved in a file and used later by the Zend_Birt_Report_Report 

object. The class also has runAndRenderReportToStream/runAndRenderReportToFile functions that will 

run and render a report in one step. The 'running report" functions get a parameter array that 

contains key=>value parameter.  

The createReport function knows to run a design report and return the Zend_Birt_Report_Report 

object that is set with the created report document.  

 

The Zend_Birt_Report_Document class sets a report document in its constructor and renders a report 

from the report document in HTML or PDF format.  

This class inherits from Zend_Birt and handles the BIRT Report object created from a report 

document. It also gets an array of bookmarks, TOCs, report 

information, and an html page of bookmarks and the html page count. 

There are three basic actions that should be done in order to create BIRT Reports: 

1. Instantiate the report design that contains the information and display type. 

2. Define the parameters . 

3. Render. the report. 

Zend Platform Directives 

Accelerator Directives  

"zend_accelerator.max_wasted_percentage"  

Description: Max percentage of "wasted" memory until restart is scheduled  

"zend_accelerator.max_warmup_hits"  

Description: How many hits are considered 'warmup' (for statistics)  

"zend_accelerator.consistency_checks"  

Description: Check cache's checksum each N requests  

"zend_accelerator.force_restart_timeout"  

Description: Time to wait for cache being unused when restart is scheduled (seconds)  

"zend_accelerator.perform_timings"  

Description: Collect performance statistics 

"zend_accelerator.validate_timestamps"  

Description: Check file timestamps 

"zend_accelerator.max_cached_filesize"  



Zend Platform APIs and Directives 

179 

Description: Max cached size for content cache (Kbytes)  

"zend_accelerator.revalidate_freq"  

Description: How often to check file timestamps on Windows (seconds)  

"zend_accelerator.min_free_disk"  

Description: Min disk space to leave free for content cache (in M or %)  

"zend_accelerator.php_extensions"  

Description: List of extensions to consider for content cache when directory is configured  

"zend_accelerator.user_blacklist_filename"  

Description: Path for a file that contains a list of files not to accelerate  

"zend_accelerator.compress_blacklist_filename"  

Description:Path for a file that contains a list of files not to compress  

"zend_accelerator.compression"  

Description: Enable compression for content cached files  

"zend_accelerator.compress_all"  

Description: Enable compression for accelerated files  

"zend_accelerator.enabled"  

Description: Enable acceleration  

"zend_accelerator.output_cache_enabled"  

Description: Enable content caching  

"zend_accelerator.max_accelerated_files"  

Description: Maximum number of keys (scripts) in accelerator hash table  

"zend_accelerator.mmap_base_file"  

Description: Windows: location of map address file  

"zend_accelerator.httpd_uid"  

Description: UID of the httpd process  

"zend_accelerator.memory_consumption"  

Description: Accelerator shared memory block size (Mbytes)  

"zend_accelerator.allow_noshm"  

Description: Allow running in "no shared memory mode" (CGI, CLI)  

"zend_accelerator.output_cache_config"  

Description: Content cache configuration file  

"zend_accelerator.output_cache_dir"  

Description: Content cache storage directory  

"zend_accelerator.use_cwd"  

Description: Use current directory as a part of script key  

"zend_accelerator.preferred_memory_model"  

Description: Shared memory model to use  

"zend_accelerator.dups_fix"  

Description: Use hack to prevent "duplicate definition" errors 

"zend_accelerator.cgi_base_shm_address"  

Description: The base address for the CGI/CLI shared memory block  



Zend Platform for i5/OS User Guide  

180 

Monitor Directives  

"zend_monitor.max_var_len"  

Description: Maximum variable length for collected data in POST/SERVERS. Limit applies to each 

single value.  

"zend_monitor.warmup_requests"  

Description: Number of requests until monitor would use averaging statistics to produce events  

"zend_monitor.load_sample_freq"  

Description: Frequency of checking for load events (seconds)  

"zend_monitor.rotate_freq"  

Description: Frequency for rotating monitor internal log files (seconds)  

"zend_monitor.reconnect_timeout"  

Description: How long monitor will wait until trying to restore broken connection to central (seconds)  

"zend_monitor.watch_functions"  

Description: List of functions to watch for time events (@file reads list from file)  

"zend_monitor.watch_results"  

Description: List of functions to watch for failure return events (@file reads list from file)  

"zend_monitor.collector_host"  

Description: Hostname for central  

"zend_monitor.collector_port"  

Description: Port for central  

"zend_monitor.log_dir"  

Description: Directory where monitor logs will be kept  

"zend_monitor.server_key"  

Description: Filename for local SSL key  

"zend_monitor.server_cert"  

Description: Filename for local SSL certificate  

"zend_monitor.collector_cert"  

Description: Filename for central SSL certificate  

"zend_monitor.enable"  

Description: Monitoring is enabled  

"zend_monitor.error_level"  

Description:  Errors reported as events  

"zend_monitor.error_level.severe"  

Description:  Errors reported as severe events  

"zend_monitor.silence_level"  

Description: If 1, does not report errors when error reporting is 0. If 2, doesn't report errors only if @ 

is used.  

"zend_monitor.max_script_runtime_load_cutoff"  

Description: Load value which would suppress time-related events  

"zend_monitor.report_variables_data"  

Description:  Which variables to report (*)  

"zend_monitor.max_script_runtime"  

Description:  Script runtime above which event is produced (ms)  

"zend_monitor.max_function_runtime"  

Description: Function runtime above which event is produced (ms)  

"zend_monitor.max_memory_usage"  



Zend Platform APIs and Directives 

181 

Description: Memory usage above which event is produced (K)  

"zend_monitor.max_load"  

Description: Load above which event is produced  

"zend_monitor.max_script_runtime.severe"  

Description:  Script runtime above which severe event is produced (ms)  

"zend_monitor.max_function_runtime.severe"  

Description: Function runtime above which severe event is produced (ms)  

"zend_monitor.max_memory_usage.severe"  

Description:  Memory usage above which severe event is produced (K)  

"zend_monitor.max_load.severe"  

Description: Load above which severe event is produced  

"zend_monitor.max_time_dev"  

Description:  Deviation from average script runtime above which event is produced (%)  

"zend_monitor.max_output_dev"  

Description:  Deviation from average output size above which event is produced (%)  

"zend_monitor.max_mem_dev"  

Description: Deviation from average memory usage above which event is produced (%)  

"zend_monitor.max_time_dev.severe"  

Description:  Deviation from average script time above which severe event is produced (%)  

"zend_monitor.max_output_dev.severe"  

Description: Deviation from average output size above which severe event is produced (%)  

"zend_monitor.max_mem_dev.severe"  

Description:  Deviation from average memory usage above which severe event is produced (%)  

"zend_monitor.mem_threshold"  

Description:  If memory usage below this value, no deviation events are produced  

"zend_monitor.time_threshold"  

Description:  If script runtime below this value, no deviation events are produced  

"zend_monitor.output_threshold"  

Description:  If output size below this value, no deviation events are produced  

"zend_monitor.event_overload_threshold"  

Description: If more then 1000 events happen in this time (seconds), extra events will be dropped  

"zend_monitor.disable_script_runtime_after_function_runtime"  

Description: Disable "script slow" event after "function slow" event happened  

"zend_monitor.tmp_dir"  

Description:  Directory where monitor temp files are written  

 

(*) G - GET, P - POST, C - COOKIE, R - RAW_POST_DATA, E - ENV, V - SERVER, S - SESSION, F - 

FILES  



Zend Platform for i5/OS User Guide  

182 

Zend Monitor Event Types 

For each event type there is a zend_monitor.<event_type>. 

zend_monitor.<event_type> - can be set to off then this event type will not be reported. E.g.: 

zend_monitor.memsize.enable = Off however the same settings can be easily defined from PHP 

Intelligence | Event Triggers. 

The following list displays the event types and the respective directive for enabling and 

disabling Events: 

 Slow Script Execution Absolute - zend_monitor.longscript.enable 

 Slow Script Execution Relative - zend_monitor.devscript.enable 

 PHP Error - zend_monitor.zenderror.enable 

 Function/Database Error - zend_monitor.funcerror.enable 

 Slow Function Execution/Slow Query Execution - zend_monitor.longfunction.enable 

 Excess Memory Usage (Absolute and Relative) -

zend_monitor.devmem.enablezend_monitor.memsize.enable 

 Inconsistent Output Size - zend_monitor.outsize.enable 

 Load Average - zend_monitor.load.enable 

 Custom Event - zend_monitor.custom.enable 

Note: 

All event types are enabled, by default. zend_monitor.enable when turned off will disable all event 

reporting activity. 

Platform Administration Directives  

zps.install_dir  

Description: The place the Zend directory was installed to (Platform/ZPS)  

studio.install_dir  

Description: The place the Zend directory was installed to (Studio Server)  

zend_gui.language  

Description: Language code Platform Administration uses for texts (i.e. en for English)  

zend_gui.language_charset  

Description: If set, all the Platform Administration files will send a Content-Type header with this 

charset also used to send specific charset in Email (should be used in the Japanese version)  

zend_gui.ini_modifier  

Description: The path where the ini_modifier util is zend_central.error_logging  

Description: If enabled, Platform Administration will log errors into the file'zend_central_error_log' 

that is located in the <install-dir>/logs directory. 

zend_central.gui_address  

Description: The full address of Platform Administration, this address is used by the node to access 

Platform Administration (login process) The address is in http(s)://host:port/path format  

zend_central.node_address Each node has this directive set with his address, the same address that 

he gave the central during installation (this is the way the central identify the server in the DB) The 

address is ONLY the hostname/IP address  



Zend Platform APIs and Directives 

183 

zds.your_servers_max_clients  

Description: Use for the ZDS tests in Platform Administration (Performance section in Platform), to 

"know" what is the value of the maxClients of the server  

Collector Center Directives  

zend_monitor.collector_cert  

Description: Certificate file for the CC  

zend_monitor.collector_key  

Description: Private key file for the CC  

zend_monitor.collector_port  

Description: Port to listen  

zend_monitor.server_key_dir  

Description: Dir to store node keys  

zend_monitor.events_db  

Description: Event DB URI  

zend_monitor.pull_freq  

Description: How often to pull node data (seconds)  

zend_monitor.ping_freq  

Description: How often to check node availability (seconds)  

zend_monitor.log_dir  

Description: Dir to store logs  

zend_monitor.gui_dir  

Description: Dir where Platform Administration files reside 

zend_monitor.event_lifetime  

Description: How long until event is considered too old (seconds)  

zend_monitor.cleanup_freq How often to clean up old events (event count)  

Debugger Directives  

"zend_debugger.allow_hosts"  

Description: Hosts allowed to connect (hostmask list)  

"zend_debugger.deny_hosts"  

Description: Hosts denied to connect (hostmask list)  

"zend_debugger.allow_tunnel"  

Description: Hosts allowed to use tunnel process (hostmask list)  

"zend_debugger.expose_remotely"  

Description: Which client can know debugger is installed  

"zend_debugger.max_msg_size"  

Description: Maximum message size accepted by Debugger  

"zend_debugger.httpd_uid"  

Description: UID for the httpd process  



Zend Platform for i5/OS User Guide  

184 

ZDS Directives  

"zds.enable" Enable  

Description: ZDS file serving  

"zds.mime_types_file"  

Description: Location of the MIME types file  

"zds.log_file"  

Description: Log file  

"zds.min_file_size"  

Description: Minimal file size to serve via ZDS process (smaller files served via Apache)  

"zds.disable_byterange"  

Description: Disable handling byte-range requests (all requests would return entire file)  

"zds.mmap_chunk" Memory chunk to map when serving file, in K. Bigger chunks imply higher 

memory usage by ZDS.  

"zds.nice"  

Description: Priority of ZDS server process. Higher number means lower priority.  

"zds.child_max"  

Description: Maximum number of ZDS sub-processes  

"zds.poll_delay"  

Description: Delay between poll invocations, in order to enable other processes to run better  

"zds.uid" UID of the ZDS file server  



Zend Platform Built-In Services and Extensions 

185 

Zend Platform Built-In Services and 

Extensions 

About 

Services are the backbone of Zend Platform's production level features. To allow a wider control over 

the production level features, in this chapter we will describe the different services used by Zend 

Platform and how they can be enabled and disabled. 

Note: 

Before disabling Services and removing extensions from your php.ini make sure you are aware of the 

following dependences: 

In Unix, Linux, i5/OS and Mac 

A message will be added to the log indicating that an extension with dependences was disabled and 

the implications of this action. 

In Windows“Zend Platform Job Queue” depends on “Zend Platform MySQL” 

“Zend Platform Pinger” depends on “Zend Platform MySQL” 

“Zend Platform Collector Center” depends on “Zend Platform MySQL” 

“Zend Platform Action” depends on “Zend Platform Collector Center” 

Stopping a service will result in a message that all its dependants’ will be also stopped, for example 

stopping ZPMySQL will display that ZPJobQ, ZPPinger, ZPCollector and ZPAction will be stopped. 

Warning: Stopping ZPMySQl will disable the Administration User Interface for all operating systems. 

Services are part of the installed package and in some situations are already running out of the box. 

This is determined according to the chosen installation method. The Zend Platform Installer has two 

types of installation methods, Custom and Express. The Custom installation prompts users to decide 

which services to run and the Express method only runs three essential components (PHP Extensions: 

Optimizer, Download Server, Accelerator, Monitor, Zend Cache and Debugger). 

Naturally, services only run according to selected license type. Therefore, Development and Enterprise 

Licenses will include the Job Queues and Java Bridge services. These services will be applicable either 

when selected in the Custom installation or available from the Setup Tool, if not selected in the 

Custom installation or after installing using the Express method. 

Note: 

If you are using Zend Platform as a debugger (Remote Debugger) for use with Zend Studio the 

recommended installation method is express. This will provide only the essential services for using the 

debugger. 

Setup Tool  

The Setup Tool provides users with an easy way to activate services and change settings. The Setup 

Tool also is a means to configure options that were not setup in the installation process. 

Running the Setup Tool 
The setup Tool is a separate component and resides outside the Zend platform user interface. 

To run the Setup Tool: 

In UNIX, Linux and Mac run /usr/local/Zend/Platform/bin/setup_tool.sh from the shell.  

In i5/OS run: GO ZENDPLAT/ZPMENU in the i5/OS command line 



Zend Platform for i5/OS User Guide  

186 

In Windows go to the Start menu and select Programs | Zend Platform | Setup Tool (in Windows a 

welcome screen will be displayed, choose the option “Modify” to access the configuration options).  

The Setup Tool includes the following options: 

2. Setup Java Bridge - The Java Bridge access Java based applications running in a Java  

4. Setup Job-Queues - The Job Queues server services Job Queues  

5. Register a Node – Register a server to belong to the Central server and be part of a cluster.   

6. Change Platform Administration Password  

 

For more information about the Setup Tool, refer to the Installation Guide. 

Services 

The following section provides a complete description of each service along with instructions on how to 

run and stop the services. 

Java Bridge 

Description Integrates Java libraries and classes within PHP applications. 

To Enable Run the setup tool and select option number, 2 “Setup Java Bridge” and input the 

required data. 

To Disable  In Unix, Linux and Mac: Execute: /usr/local/Zend/Platform/bin/javamw.rc 

stop.  

 In i5/OS Execute GO ZENDPLAT/ZPMENU option 2 and then option 3. 

 In Windows: Go to Services (Start | Settings | Control Panel | 

Administrative Tools | Services) and stop the service (double-click on the 

service name and in the "Startup Type" field select the option "Disabled') 

“Zend Platform Java Bridge”, you can also run one of these commands in 

the command line (Start | Run, enter CMD in the text area and press 

enter to open the command line): 

net stop ZPJava 

or 

net stop “Zend Platform Java Bridge” 

*Quotes are mandatory. 

 

To completely disable the Java Bridge, remove the directive 

zend_extension_manager.java_bridge from the php.ini to prevent loading a 

redundant shared object (in UNIX, linux i5/OC and Mac .so in Windows .dll). 

Resulting 

Outcome 

If stopped, integration with Java libraries and classes within PHP applications will 

be not be available. 

 



Zend Platform Built-In Services and Extensions 

187 

Job Queues 

Description Job Queues reroutes and delays the execution of processes and to improve 

response times during interactive Web sessions. 

To Enable Run the setup tool and select option number, 3 “Setup Job Queues” 

To Disable  In Unix, Linux and Mac: Execute: /usr/local/Zend/Platform/bin/jqd.sh 

stop and remove the directive zend_extension_manager.jobqueue_client 

from the php.ini to prevent loading a redundant SO. 

 In Windows: Go to Services (Start | Settings | Control Panel | 

Administrative Tools | Services) and stop the service (double-click on the 

service name and in the "Startup Type" field select the option "Disabled') 

“Zend Platform Job Queues”, you can also run one of these commands in 

the command line (Start | Run, enter CMD in the text area and press 

enter to open the command line): 

net stop ZPJobQ  

or 

net stop “Zend Platform Job Queue” 

*Quotes are mandatory. 

 

To completely disable Job Queues, remove the directive 

zend_extension_manager.jobqueue_client from the php.ini to prevent loading a 

redundant shared object (in Unix .so in Windows .dll). 

Resulting 

Outcome 

If stopped, the ability to reroute and delay execution of jobs will be disabled (jobs 

that are already running will not be stopped). 

 

Note:  

To ensure the Java Bridgeand Job Queue services do not start again next time the server is booted, 

erase the following: 

1) Open /usr/local/Zend/Platform /etc/rc.d/, and remove these symbolic links: 

- S10mysql.sh -> /usr/local/Zend/Platform/MySQL/bin/mysql.sh 

- S20jqd.sh -> /usr/local/Zend/Platform/bin/jqd.sh 

- S30scd.sh -> /usr/local/Zend/Platform/bin/scd.sh 

- S40javamw.rc ->  /usr/local/Zend/Platform/bin/javamw.rc 

*Not all will appear depending on your configuration preferences. 

2) Delete platform_init.sh.  

In Windows, open the Service Manager (Start | Settings | Control Panel | Administrative Tools | 

Services and set them to Disabled. 

When reactivating these services this information will be restored automatically. 



Zend Platform for i5/OS User Guide  

188 

Cache Cleaner 

Description Cleans old files from the cache directory and maintains cache size below 

the limits. It runs as a stand-alone background program (daemon), it may 

be signaled by the user manually, or from the crontab, or from httpd when 

the cleanup is needed. 

To Enable Automatically configured during installation 

To Disable  In Unix, Linux Mac: Run the command: 

#crontab -u $apache_user -e as root and remove the following 

line: 

“*/10 * * * *  /usr/local/Zend/Platform/bin/cache_clean -l 

/usr/local/Zend/Platform/etc/zend.ini &>/dev/null" 

 In i5/OS Execute GO ZENDPLAT/ZPMENU option 2 and then option 

5. 

 In Windows: Go to Services (Start | Settings | Control Panel | 

Administrative Tools | Services) and stop the service (double-click 

on the service name and in the "Startup Type" field select the 

option "Disabled') “Zend Platform Cache Cleaner”, you can also 

run one of these commands in the command line (Start | Run, 

enter CMD in the text area and press enter to open the command 

line): 

net stop ZPCache 

or 

net stop “Zend Platform Cache Cleaner” 

*Quotes are mandatory. 

Resulting Outcome This stand-alone background program cleans the cache directory from old 

files and maintains cache size below the limits. Deactivating it should only 

be done in the event you choose not to use Platform's caching abilities. 

 



Zend Platform Built-In Services and Extensions 

189 

Collector Center 

Description Collects PHP events for PHP Intelligence. 

To Enable Automatically configured during central installation. In Windows the node 

collector service (that is part of the four collector services) is also installed 

in the Node installation. 

To Disable  In Unix, Linux and Mac: Run the command: 

#crontab -u $apache_user -e as root and remove the following 

line: 

*/2 * * * *  /usr/local/Zend/Platform/bin/collector_center 

/usr/local/Zend/Platform/etc -D 

 In i5/OS Execute GO ZENDPLAT/ZPMENU option 2 and then option 

2. 

 In Windows: Go to Services (Start | Settings | Control Panel | 

Administrative Tools | Services) and stop the services (double-click 

on the service name and in the "Startup Type" field select the 

option "Disabled') “Zend Platform Action”, “Zend Platform Pinger” 

“Zend Platform Collector Center” “Zend Platform Node Collector” 

you can also run one of these commands in the command line 

(Start | Run, enter CMD in the text area and press enter to open 

the command line): 

net stop ZPAction 

net stop ZPPinger 

net stop ZPCollector 

net stop ZPNodeCollector 

 

or 

net stop “Zend Platform Action” 

net stop “Zend Platform Pinger” 

net stop “Zend Platform Collector Center” 

net stop “Zend Platform Node Collector” 

*Quotes are mandatory. 

Resulting Outcome If deactivated, PHP events will not be captured. This should be done in the 

event you do not wish to utilize PHP Intelligence's monitoring abilities. 

 



Zend Platform for i5/OS User Guide  

190 

Extensions 

Zend Platform extensions provide additional functionality. In order to disable an extension, open you 

php.ini with a text editor and remove the extension lines (if present) or in Windows go to Services 

(Start | Settings | Control Panel | Administrative Tools | Services) and stop the service (double-click 

on the service name and in the "Startup Type" field select the option "Disabled'): 

zend_extension_manager.optimizer 

Description  Controls the Zend Optimizer component. 

To Enable Automatically configured during installation.  

To Disable Remove the line from your php.ini 

Resulting Outcome PHP code will not be optimized and files encoded with Guard will not run. 

Users may notice a decrease in performance after disabling the Optimizer. 

zend_extension_manager.download_server (not applicable in Windows) 

Description Controls the Zend download server component. 

To Enable Automatically configured during installation.  

To Disable Remove the line from your php.ini 

Resulting Outcome Files defined in the mime_types file will not be serviced by the download 

server and will start consuming additional bandwidth. 

zend_extension_manager.platform 

Description platform.so or platform.dll (in Windows) includes the components; 

Accelerator, Monitor  and Zend Cache. 

To Enable Automatically configured during installation.  

To Disable Remove the line from your php.ini 

Resulting Outcome Disables Monitoring (PHP Intelligence) and Acceleration and can be used to 

stop both components at once instead of disabling each component 

individually. 

Zend Platform Action (Windows Only) 

Description Checks if there are actions associated with an Event when an Event is added 

to the DB and executes them. 

To Enable Automatically configured during installation.  

To Disable Remove the line from your php.ini 

Resulting Outcome Actions associated with events will not be executed. 

Zend Platform Pinger (Windows Only) 

Description This process periodically makes a query to nodes to verify activity and 

status (OS, PHP version, etc.) 

To Enable Automatically configured during installation.  

To Disable Remove the line from your php.ini 

Resulting Outcome Nodes will not be checked for activity and status and should be manually 

checked. 

 



Zend Platform Built-In Services and Extensions 

191 

Zend Platform Collector Center  

Description Collects and aggregates information from nodes in the cluster that is 

displayed in the Zend Platform PHP Intelligence module. 

To Enable Automatically configured during installation.  

To Disable Remove the line from your php.ini 

Resulting Outcome Event information will not be collected from Nodes, this is equivalent to 

disabling the cluster configuration and deactivating PHP intelligence 

Zend Platform Node Collector 

Description A daemon process that receives Events from Zend platform Nodes. 

To Enable Automatically configured during installation.  

To Disable Remove the line from your php.ini 

Resulting Outcome Event information will not be collected from nodes, this is equivalent to 

disabling the cluster configuration and deactivating PHP intelligence. 

 



Zend Platform for i5/OS User Guide  

192 

Tutorials 

IN THIS CHAPTER… 

INTEGRATING EXISTING AND LEGACY APPLICATIONS 

CALLING AN EJB ON WEBSPHERE FROM PHP 

PARTIAL AND PREEMPTIVE PAGE CACHING 

This section of the User Guide is dedicated to tutorials on different subjects. 

Tutorial Feedback 

Please send us your opinion and suggestions for new tutorials by e-mail to: 

documentation@zend.com. 

Integrating Existing and Legacy Applications 

This tutorial details the integration of Zend Platform’s Event Details screens with other legacy 

applications. 

Reproducing and resolving bugs, one of the most problematic challenges of development, is often time 

consuming, and in most cases, almost impossible when information is not collected at the time of the 

occurrence. PHP Intelligence is an event driven system that provides real-time analysis of PHP 

applications. By enabling you to obtain immediate insight into your PHP applications, PHP Intelligence 

provides a fast and efficient means to reproduce and resolve problems, while maintaining a complete 

audit trail of the occurrence's details. 

PHP Intelligence proactively alerts you to problematic occurrences in your application. This means that 

if you are a Developer or System Administrator you will not need to monitor the Zend Platform 

console at all times—instead, the information comes to you! An event, containing the audit trail of an 

occurrence, can be made known to you through an Email Notification. If you require full event details 

available outside of the Zend Platform console, an Event Details screen can be published to a URL in 

XML format. Both Event Details screens contain aggregated information relevant to the occurrence of 

an event, or in other words “Full Problem Context”: Event type, Event ID, Timestamp, Severity, 

number of occurrences, etc. 

Full Problem Context provides valuable information for the entire PHP application lifecycle 

(development, production and deployment). Exposing the source of an occurrence along with the 

ability to drill-down and investigate details pertaining to an event’s location, time and context, 

provides in-depth insight to the reasons why the event occurred and a basis for resolving the issue.  

PHP Intelligence includes the following Event Details screen Types: Slow Script Execution, PHP Errors, 

Function Errors, Memory Usage, Database Errors, Query Execution, Output Sizes, Load Averages and 

more...  

Each Event Details screen Type includes basic and event-specific details such as: event type, event 

ID, Timestamp, Severity, number of occurrences, error type, error text, triggered value, load average, 

Source File Line, Script Name, Host URI, Vardata Type & Name, Function Name, Argument Numeric 

Value, Function, Included Files, Backtrace, etc. 

Contents of the XML output can be easily utilized and integrated to provide an information feed to 

various legacy systems such as: Bug tracking systems for development and QA, CRM applications for 

managing customer care, management systems such as Tivoli and HP OpenView for system health 

information, and most commonly, generic monitoring systems such as Nagion or BigBrother that only 

provide OS service information.  

Using event information, developers and administrator teams have a single point of reference to 

streamline the maintenance workflow. You can further enhance your development lifecycle by 

debugging your PHP code referenced in Event Details screens directly through the built-in integration 



Tutorials 

193 

with Zend Studio. This feature includes debug capabilities that enable you to add watches, define 

conditional breakpoints, view the stack trace and step into the source code to immediately debug the 

problem.  

Zend Platform's XML output enables information to be easily interchanged. Using “Event Details”, 

developers can be sure that information pertaining to code, database and performance issues can be 

easily reused in a multitude of applications. Examples of this use include sending SMS messages 

containing event details, or triggering a mailing system to send a promotional gift to a customer who 

encountered a performance problem. Done by, extracting customer ID information provided to you in 

the Event Details screen (cookies).  

Event Details screens are delivered as XML, by defining the relevant action (“Submit Report to the 

Specified URL”) for an event. The report information is submitted as XML data to the specified URL. 

Submission is done using the POST method, and the data is supplied through a variable named 

'event_data'. This variable is accessible in PHP through $_POST['event_data']. 

XML reports are structured as follows: 

Each attribute is included if it exists in the Event Details screen: 

<?xml version="1.0" ?> 

<event type event_id class  timestamp time severity> 

If there is an error: 

    <error type>error text</error> 

    <stats triggered_value avg load_average/> 

If there is a source file: 

    <source file line/> 

    <script name host uri> 

        <vardata type name value/> 

    </script> 

If there is a function: 

    <function name> 

        <args> 

            <arg num value/> 

        </args> 

    </function> 

If there are included files: 

    <included_files> 

        <file name\> 

    </included_files> 

If there is a backtrace for this event: 

    <backtrace> 

        <call depth function file line/> 

    </backtrace> 

</event> 

By viewing the XML tagged file as fielded text, the fielding makes it possible to break Event Details 

screens down to their component parts to any degree of granularity for storage in a database. Once in 

the database, the data can be utilized by another application. 

The following example shows how Event Details data can be extracted from an XML file and inserted 

into a database for use in a different system (could be any system based on a database, such as: Bug 

Tracking, CRM, management or any other application). 

 

 



Zend Platform for i5/OS User Guide  

194 

<?PHP 

$event_xml_data = (isset($_POST['event_data']))?$_POST['event_data']:null; 

if (!$event_xml_data) {    // no Event Context arrvied 

    die(); 

} 

$xml = simplexml_load_string($event_xml_data); 

Implement different behaviors according to Class 

$event_type = (string) $xml['type']; 

// if this event is a Custom Event, we may implement different behaviors according to 

the Custom Event’s class 

if ($event_type == 'custom') { 

$custom_class = (string) $xml['class']; 

switch ($custom_class) { 

// different behaviors according to the class 

} 

} 

// get the new event id 

$event_id = (int) $xml['event_id']; 

// insert a new event with its genreal info (type and timestamp) to the db 

insert_new_event_into_db($event_id,$event_type ,(int)  

$xml['timestamp']); 

// parse the function parameters of the function where the event occured 

$function_parameters = array(); 

foreach ($xml->function->args->arg as $arg) { 

    $function_parameters[(int) $arg['num']] = (string) $arg['value']; 

} 

// insert the function data (function name and parameters, where the  

event occured) to the db 

update_event_function_data($event_id, (string) $xml->function['name'],  

$function_parameters); 

/** 

 * insert a new event (with some genreal info) to the db 

 * 

 * @param int $id id of the new event in the ZendPlatform events database 

 * @param string $type the event type 

 * @param int $timestamp the unix timestamp when the event occured 

 */ 

function insert_new_event_into_db($id,$type,$timestamp) { 

} 

/** 

 * update a specific event function data in the database 

 * 

 * @param int $id the event id we want to update 

 * @param string $function_name name of the function where the event occured 

 * @param array $function_params array of the function parameters (num  

=> value) 

 */ 

function update_event_function_data($id,$function_name,$function_params) { 

} 

?> 



Tutorials 

195 

The first part of the example uses a PHP 5 Simple XML extension to parse XML to PHP objects that can 

be processed with normal property selectors and array iterators. The second part extracted data from 

the event XML data, and inserted it into a database. 

 

As this tutorial demonstrates, XML Event Details generated by the PHP Intelligence component of 

Zend Platform, provides Developers and System Administrations a single point of reference for 

production environments, and to streamline maintenance workflow. In environments where multiple 

management applications are an everyday reality, Zend Platform provides a flexible information 

feed to legacy systems, relieving the overhead normally required to integrate with these 

applications. 

 

Calling an EJB on Websphere from PHP 

This tutorial reviews the steps needed to call an EJB on WebSphere from PHP using the Java Bridge. 

These instructions assume that the developer has a system(s) with WebSphere, PHP, and the Zend 

Platform installed. 

To call an EJB on Websphere from PHP, a script file needs to be created. This script should start the 

javaMW server with the correct settings to run a Websphere client.  

Some of the important things to remember are: 

1. Use IBM's java that ships with the Application Client to run the javaMW server. 

2. The jars containing the client classes for any EJB that is to be called need to be classpath of 

the javaMW server. 

3. The jars and environment variables for the WebSphere application client runtime need to be 

on the command line staring the javaMW server. 

The following is an example script file for starting the javaMW server with the WebSphere runtime 

configuration options and the jars needed to call the Basic Calculator Technology sample shipped with 

Websphere.  

Note: 

This script is a modified version of the Basic Calculator Thin Client script file shipped with the 

Websphere Client Install. 

 

#!/bin/sh 

. /opt/IBM/WebSphere/AppClient/bin/setupClient.sh 

# Change the PROVIDER_URL to point to this machine or another server. 

if [ "${SERVERPORTNUMBER}" != "" ] 

    then 

       PROVIDER_URL=iiop://$DEFAULTSERVERNAME:$SERVERPORTNUMBER 

else 

         PROVIDER_URL=iiop://$DEFAULTSERVERNAME 

fi 

"$JAVA_HOME/bin/java" $WAS_LOGGING -classpath 

/usr/local/Zend/Platform/Bin/javamw.jar:/opt/IBM/WebSphere/AppClient/samples/lib/Tec 

hnologySamplesThinClient/BasicCalculatorClientCommon.jar:/opt/IBM/WebSphere/ 

AppClient/samples/lib/TechnologySamplesThinClient/BasicCalculatorThinClient. 

jar:/opt/IBM/WebSphere/AppClient/samples/lib/TechnologySamplesThinClient/Bas 

icCalculatorEJB.jar 

-Djava.ext.dirs="$WAS_EXT_DIRS" -Djava.naming.provider.url=$PROVIDER_URL 



Zend Platform for i5/OS User Guide  

196 

-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFac 

tory 

-Dzend.javamw.threads=20 -Dzend.javamw.port=10001 "$SERVER_ROOT" 

"$CLIENTSAS" com.zend.javamw.JavaServer 

Instructions 

 Start the javaMW server using the script. 

 Write a PHP client, which uses the Java Bridge functionality to call the ejb running on 

Websphere.  

The following is an example PHP client for calling the Basic Calculator Technology sample. 

<?php 

   // Get the provider URL and Initial naming factory 

   // These properties were set in the script that started the Java Bridge 

   $system = new Java("java.lang.System"); 

   $providerUrl = $system->getProperty("java.naming.provider.url"); 

   $namingFactory = $system->getProperty("java.naming.factory.initial"); 

   $envt = array( 

     "javax.naming.Context.PROVIDER_URL" => $providerUrl, 

     "javax.naming.Context.INITIAL_CONTEXT_FACTORY" => $namingFactory,); 

   // Get the Initial Context 

   $ctx = new Java("javax.naming.InitialContext", $envt); 

   // find the EJB 

   $obj = $ctx->lookup("WSsamples/BasicCalculator"); 

   // Get the Home for the EJB 

   $rmi = new Java("javax.rmi.PortableRemoteObject"); 

   $home = $rmi->narrow($obj, new 

Java("com.ibm.websphere.samples.technologysamples.ejb.stateless.basiccalcula 

torejb.BasicCalculatorHome")); 

   // Create the Object 

   $calc = $home->create(); 

   // Call the EJB 

   $num = $calc->makeSum(1,3); 

   print ("<p> 1 + 3 = $num </p>"); 

?> 

 

This tutorial detailed how developers can use EJB on WebSphere from PHP using the Java Bridge. 

The two steps are: to create a script file to start the JavaMW server and to write a PHP client which 

uses the Java Bridge functionality to call the EJB running on WebSphere. 

 



Tutorials 

197 

Partial and Preemptive Page Caching 

This tutorial will review one of Zend Platform’s most powerful features, Partial Page Caching. Partial 

Page Caching is used in cases where it is impractical or impossible to cache the entire output such as 

when sections of the script are fully dynamic or when the conditions for caching the script are too 

numerous. An example of this type of usage is when some of the output is a form, that has credit card 

numbers, addresses and all kinds of information that for security reasons, should not be cached  

The following tutorial is a step-by-step guide to mastering Partial Page Caching. 

Inside this tutorial, you will find several ways to cache you output: 

 Partial Page Caching APIs – a general overview of the Caching APIs with usage examples. 

 Action Based Partial Page Caching – Cache using buttons and conditions  

Partial Page Caching APIs 

Partial Page Caching can also be achieved using the following functions for almost all situations: 

Output Caching Functions 

Function  Action 

output_cache_fetch()  Gets the code's return value from the cache, if it 

is there. 

output_cache_output() Calls a function and checks if the function exists 

in the cache.Yes – PrintNo – Puts function output 

in cache and prints. 

output_cache_exists() Checks if the key exists in the cache.Yes – 

Print.No – Runs code, output in cache and prints 

until it reaches the stop command: 

output_cache_stop(). 

output_cache_stop() Indicates the end of a block of code. 

Data Caching Functions 

Function  Action 

output_cache_put() Enters a single variable into the cache 

output_cache_get()  Gets the Variable from the cache at the end of 

its lifetime. 

Invalidate Cache 

Function  Action 

output_cache_remove_key (string key) Respectively remove items from the cache 

according to their type (Key, URL or File) 

The partial caching functions are divided into two groups, output caching and data caching. This 

document will explain each of the two groups and give practical examples of each function call. 

Output Caching 

The first groups of functions are the output caching functions. These functions capture the output from 

a function or block of PHP code and cache it. These functions are:  

output_cache_output() 

output_cache_exists() 



Zend Platform for i5/OS User Guide  

198 

output_cache_stop() 

Output caching functions allow programmers to remove the execution of blocks of code with static 

output, such as looping over and printing the day’s news headlines. This output changes infrequently, 

so instead of reprocessing it for every user caching allows PHP to skip execution and print the results. 

Prototype: 

void output_cache_output(string key, string code, int lifetime) 

The first time output_cache_output() is called, it will execute the function defined in argument two, 

and store any output in the cache under the retrieval key specified in argument one. Each subsequent 

call to output_cache_output () with the same value as argument one will result in the output of this 

cached data instead of the execution of the function in argument two, until the cache lifetime in 

argument three expires. 

output_cache_output () is typically used to capture the output created by a function call. In order to 

use it, you would need to wrap a section of code as a function. When you call output_cache_output (), 

it will call this function and cache it's output. 

output_cache_output () takes three arguments:  

1. The key value with which this output will be cached.  

2. The function call.  

3. The cache lifetime in seconds.  

output_cache_output() has no return value. 

Usage Example 

<?  

function content($time) {  

/* Create a function to Wrap the code that produces  

   the output */  

     

    print "<p>Cached Time: $time </p>";  

    /* The actual value of $time will be printed  

       only once every 30 seconds. The output from  

       the print statement will be cached, and the  

       function call will be ignored until the cache  

       lifetime expires */  

}  

$time = time();  

/* Get current time, in seconds */  

print "<p>Current Time: $time </p>";  

/* Print the real current time */  

output_cache_output("Current Time","content($time);",30);  

/* Cache all output for the function content() and  

   store it based on the key "Current Time" for 30  

   seconds */  

?>  

Usage Notes: 

output_cache_output() is used to cache the output generated from functions. To utilize it, wrap a 

section of code (which generates the output you wish to cache) as a function. Any output statements 

in this new function will be captured into a buffer and stored as cached data with the key specified. 

The other two functions, output_cache_exists () and output_cache_stop (), are used in tandem to 

simplify the task of caching output from a given section of code. 



Tutorials 

199 

Prototype: 

boolean output_cache_exists(string key, int lifetime) 

void output_cache_stop() 

output_cache_exists() is called from a conditional statement. The conditional statement should wrap 

the section of code producing the output you are intending to cache. 

output_cache_exists() takes two arguments:  

1. The key value with which this output will be cached.  

2. The cache lifetime in seconds.  

output_cache_exists() returns a boolean. TRUE is the key exists, FALSE if it doesn't. 

output_cache_stop() takes no arguments. 

output_cache_stop() has no return value. 

Usage Example 

<?  

if (!output_cache_exists("Some_Key2", 3)) {  

    echo time();  

    output_cache_stop(); // Stop buffering...  

}  

?>  

Data Caching 

In cases where caching the output from a script isn't possible, we offer a set of functions for caching 

data. These functions are output_cache_fetch(), output_cache_put() and output_cache_get(). 

Data caching allows programmers to skip execution of repetitive database calls, increasing script 

performance and reducing overhead on the database. Typical uses of data caching include caching 

user preferences, caching product pricing, or any SQL call which changes infrequently. 

Prototype: 

string output_cache_fetch(string key, string code, int lifetime)  

output_cache_fetch() works in a similar manner to the output caching function, 

output_cache_output(). The major difference is that instead of caching the output from the function it 

caches the return value as a string. 

output_cache_fetch() receives 3 arguments:  

1. Unique identifier string for the data (string)  

2. PHP code to be cached (string)  

3. Cache lifetime in seconds (integer)  

output_cache_fetch() returns a string containing the return value of the cached code section as 

defined in argument 2. The ID, defined in argument 1, serves to differentiate the code section and 

give it a name. Lifetime, defined in argument 3, is handled in the same way the Zend Performance 

module handles cache lifetimes for all cached files -- cached copies older than the lifetime will be 

refreshed when the function is called. 

Note: 

Unlike normal caching only the return value of the given PHP code is cached.  



Zend Platform for i5/OS User Guide  

200 

Usage Example 

<?  

function get_content($time, $sec, $usec) {  

    /* I define an arbitrary function which  

       returns data. */  

         

    $data = array();  

    $data["time"] = $time;  

    $data["sec"] = $sec;  

    $data["usec"] = $usec;      

    /* Create an array to store the data.  

       This is where you would generate the data  

       you wish to cache, such as making database  

       calls. */  

    $ser_data =  serialize($data);  

    /* serialize the array for return */  

      

    return ($ser_data);  

}  

$time = time(); /* get current timestamp */  

$micro = microtime();  

/* get current timestamp  

   including microseconds */  

list ($usec, $sec) = explode(" ", $micro);  

/* Print the real current time */  

print "<p>Current Time: $time, $sec, $usec</p>";  

$cached_string = output_cache_fetch("Example: Fetch","get_content($time, $sec, 

$usec);",30);  

/* Call the function via the 'output_cache_fetch()'.  

   If the content key exists and the lifetime hasn't  

   expired, the function execution will be skipped  

   and the cached data will be returned via the cache  

   API call. */  

$data = unserialize ($cached_string);  

/* unserialize the data */  

/* Print the cached time */  

print "<p>Cached Time: " . $data["time"] . "," . $data["sec"]. "," .$data["usec"] . 

"</p>";  

print "<p><b>Refresh to see caching in action!</b></p>";  

?>  

The strength of output_cache_fetch is that it allows the developer to offload repetitious database calls 

by wrapping these calls in a function. The following example illustrates how this would work. 

<?php  

/* Note that this code is kept as simple as possible,  

   with no return type checks etc., in order to focus  

   on the caching features. */  

/* Display greetings and read user info from database -  

   this part must remain dynamic */  

     

$user_id=($_SESSION['user_id']);  

$result = mysql_query("SELECT name,country,airport  



Tutorials 

201 

                       FROM users  

                       WHERE id=$user_id");  

list($name,$country_id)=mysql_fetch_array($result,MYSQL_ASSOC);  

echo "<P>Welcome $name ".date("F j, Y, g:i a") ."</P> ";  

/* Note that the code to be cached should be wrapped as  

   a single function call (see argument 2 in above  

   example) - this is to improve readability and code  

   reuse (the code we want to cache is usually longer  

   than one line.) */  

// Display list of destination countries  

$sql = "SELECT id,name FROM countries";  

echo "<P>Destinations: ";  

$destination_str=output_cache_fetch("destinations","GetQuery('$sql')",3600);  

$destination_arr = unserialize($destination_str);  

$out = "<P>Destination Airport: <SELECT NAME=\"destination_airport\">";  

foreach ($destination_arr as $destination) {  

        $out .= "<OPTION VALUE=\""  

        .$destination['id']."\">"  

        .$destination['name']."</OPTION> ";  

    }  

$out .= "</SELECT></P> ";  

echo $out;  

echo "</P>";  

/* In the first caching example (above), we cache the  

   list of destinations. This is the same for every  

   user, and so the cache id is a simple string. In  

   the second example (below), the list of airports  

   depends on the user's country. So, the country_id  

   is added in the ID string. This will create a  

   different cache copy for each continent. */  

// Display list of airports in the user's home country  

$sql = "SELECT id,name FROM airports WHERE country='$country_id'";  

$airports_str = output_cache_fetch("airports_$country_id","GetQuery('$sql')",3600);  

$airports_arr = unserialize($airports_str);  

$out = "<P>Departing Airport: <SELECT NAME=\"depart_airport\"> ";  

foreach ($airports_arr as $airport) {  

    $out .= "<OPTION VALUE=\"".$airport['id']."\">".$airport['name']."</OPTION> ";  

}  

$out .= "</SELECT></P> ";  

echo $out;  

/* This function is more general purpose, meant to be  

   used with output_cache_fetch () it performs an SQL  

   query and returns the results as a serialized string.*/  

function GetQuery ($sql_query) {  

    $result = mysql_query($sql_query);  

    $res_arr = mysql_fetch_array($result, MYSQL_ASSOC));  

    $res_str = serialize($res_arr);      

    return $res_str;  

}      

?>  



Zend Platform for i5/OS User Guide  

202 

Usage Notes: 

You can use output_cache_fetch() to cache non-string types (e.g. arrays and objects) of PHP variables 

by using PHP's serialize() and un-serialize() to convert them to strings and vice versa.  

output_cache_fetch requires the code which generates the cache data to be wrapped in a function. 

This allows the cache routine to skip the execution of this code if the data is already cached 

output_cache_put() and output_cache_get() provide a direct way to store and retrieve data from the 

cache. 

Prototype: 

void output_cache_put(string key, mixed data) 

void output_cache_get(string key, int lifetime)  

output_cache_put() takes two arguments:  

1. The key value with which this data will be cached.  

2. The data to be cached. (scalar, string, or serialized data).  

output_cache_put() has no return value. 

output_cache_get() takes two arguments:  

1. The key value with which the data is stored.  

2. The lifetime that this data should be considered valid.  

output_cache_put() returns the cached data, if it exists and is valid. Otherwise it returns false. 

Usage Example 

<?  

if(($result = output_cache_get("TestFunctionResult", 30)) === false) {  

    $result = microtime();  /* Current timestamp */  

    print "<br><i>Fetching Fresh Content</i><br>";  

     /* Should only print this every 30 seconds when  

        the content is fetched fresh */  

    output_cache_put("TestFunctionResult", "Cached: $result");  

}  

print "<b>$result</b><br>";  

?>  

Usage Notes: 

The put/get routines are a simpler method for caching data than output_cache_fetch. They are 

typically used for the storage and retrieval of small bits of data. 

Action Based Partial Page Caching 
Action Based Partial Page Caching pertains to caching part of an output based on the occurrence of an 

action. This type of Caching is necessary in instances where it is preferable to refresh the Cache when 

an action occurs rather than time based. 

For example: If we have a list of people who are “Currently Online” and we were to use time based 

caching, we would have to set an extremely short time limit to make sure that the list is updated at all 

times. We would also waste valuable system resources every time we refresh the cache. Instead, we 

can adopt a more efficient approach: refreshing the cache based on an action, for instance, every time 

a member goes online or logs out.  

How do we do this? 



Tutorials 

203 

There are two “Partial Page Cache” options based on an action: 

1. Conditional Partial Page Caching 

2. Button Based Partial Page Caching 

Conditional Partial Page Caching 

With this option, we predetermine conditions for caching and invalidating (If X occurs then do Y). 

For example: we can cache our list of people who are “Currently Online” based on their log-on 

action. Whenever someone logs-on, his or her name will be added to the cache. Subsequently, when 

the same person logs-off we could set another condition will remove the name from the cache. 

The following code example demonstrates how to empty the cache when a certain action occurs:  

if (check_some_condition()) { 

output_cache_remove_key (...); 

} 

Button Based Partial Page Caching 

With this option, we set a specific button to initiate refreshing the Cache (Pressing button X does Y). 

For example: we can cache our list of people who are “Currently Online” based on a specific button 

that the person logging-in will press (such as: login, next, go, etc). Whenever someone presses the 

button, his or her name will be added to the cache. Subsequently, when the same person presses a 

different button, his or her name will be removed from the cache. 

The following example demonstrates the button triggered Partial Page Caching technique:  

<form action="clean_cache.php"> 

<input type="submit" value="Clear Cache"> 

</form> 

The 'action' attribute points to the clean_cache.php script. Therefore, when the user submits the form, 

clean_cache.php is executed+. 

The clean_cache.php file is the same as the one that we put in the Cron Job example (see next 

chapter): it clears the cache (with output_cache_remove()) and then builds it again  

(With fopen("http://..")) - So we get a real cache refresh. 

 

This tutorial details Action Based Partial Page Caching, with conditional or button-oriented options. 

 



Zend Platform for i5/OS User Guide  

204 

Appendixes 

Appendix A – Troubleshooting Zend Platform 

Web Server 

Possible Issue Recommended Action  

Images are not displayed in the Administration 

User Interface (GUI) when using Apache 2. 

Add "EnableSendfile Off" to your httpd.conf. 

Note: this is not a Zend Platform issue if the 

Sendfile support is broken, images of other web 

pages on the same server will suffer from the 

same problem and this action will fix the 

problem for the entire server. 

Accelerator 

Possible Issue Recommended Action  

Received Error Message: Cannot communicate 

with reporting daemon. Reporting disabled. 

Please restart httpd to re-enable reporting. 

The connection to the monitoring reporting 

process was broken. This happens when daemon 

process is either dead or can not timely respond 

to events sent to it (either stuck or overloaded).  

Immediate work-around would be to, restart 

Apache, that will  launch a new copy of reporting 

process. Also examine logs for the evidence of 

reporting process logging any errors or crashing. 

 

The Communication Tunnel  
The Communication Tunnel includes settings in Zend Platform and Zend Studio. The following lists the 

possible causes and solutions depending on the origin of the problem. 

Troubleshooting Zend Studio 

If Zend Studio is unable to connect to the target server, you will get an error message with the 

response from the server. The table below describes the most likely causes and recommended actions 

for successfully establishing a connection with the target server. 



Appendixes 

205 

 

Possible Issue Recommended Action  

The server address or the port you entered is 

incorrect 

Enter the correct server information in the 

Tunneling Settings dialog.  

HTTP authentication is required Enter authentication information in the Tunneling 

Settings dialog box; then click the 'Send 

authentication information' checkbox.  

The dummy file content or location on the server 

is incorrect 

The dummy file on the server side was changed 

or does not exist. You will need to insure that 

the correct dummy file with the correct content 

is placed in the correct directory on the target 

server (The correct dummy file is created and 

located properly as part of the Installation 

procedure. The problem here is post-

installation).  

You are not allowed to connect with the server 

via the communication tunnel  

You must have tunneling permissions in the 

Zend Platform Allowed Hosts Studio Server | 

Settings.  

Troubleshooting Zend Platform 

If Zend Platform is unable to communicate, there are a number of possible reasons. The table below 

describes the likely reasons and suggests possible solutions. 

Possible Issue Recommended Action 

Zend Studio is not running.  Run Zend Studio. 

The version of Zend Studio you are using is 

lower than 4.0.0. 

Please install a newer version, if available. Zend 

Platform’s interface with Zend Studio requires 

Zend Studio 4.0 (or higher). 

Port for auto detection not the same 

 

Check that Zend Studio is listening to the same 

port as the one to which you are trying to 

connect. 

Some other failure happened in the browser or 

in the Zend Studio 

Use manual settings and if that doesn't work 

contact Zend Support 

 



Zend Platform for i5/OS User Guide  

206 

Appendix B – Configuration Check List 

This Check List details all the Zend Platform configuration tasks in chronological order. This list can 

be printed and used as an extra aid for setting-up Zend Platform. 

1. Configure Clusters and Groups when working in a cluster environment to enable event 

aggregation over multiple servers. 

Platform |Status | Manage Cluster or use the Shortcut Platform | Dashboard | Manage 

Cluster 

2. Event Triggers, to modify default settings to suit the new environment: 

PHP Intelligence | Event Triggers  

Or use the shortcut Platform | Dashboard | Event Triggers 

3. Configure Action Rules, to send Event Details data by e-mail or to a URL: 

Platform | Dashboard | Event Actions 

4. Configure Performance, to define initial performance settings for Code Acceleration, 

Dynamic Content Caching, File Compression and Download optimization: 

Performance | Settings 

5. Configure Virtual Hosts and fine tune performance setting per file: 

Performance | File View 

6. Setup integration with Zend Studio Server:  

Go to Zend Core Server and configure the settings.  

7. Establish a persistent connection with Zend Studio for Debugging Profiling and Editing 

code:  

Go to Zend Core | Server.  

8. Configure PHP settings to customize the php.ini and zend.ini to your environment: 

Configuration  | PHP Configuration or use the Shortcut: Platform | Dashboard | Configure 

PHP Settings 

9. Define User and Group permissions 

Platform | User Management 

 

Appendix C – Performance Lifecycle Check List 

This Check List details all the Zend Platform performance Lifecycle tasks in chronological order. This 

list can be printed and used as an extra aid for calibrating Zend Platform. 

1. Benchmark Web application, to establish optimization-starting point: 

Performance | Testing | Analyze Site – Run Performance Tool 

2. Calibrate Event rules to configure PHP Intelligence events to the Web application's 

performance parameters: 

PHP Intelligence | Event Triggers  

Or use the shortcut Platform | Dashboard | Event Actions 

3. Benchmark Web application, to establish a second optimization-starting point: 

Performance | Testing | Analyze Site – Run Performance Tool 

4. Analyze Event Details, to pinpoint performance issues: 

PHP Intelligence | Event List 

Recommended: Focus on the following performance related event types: 

• Slow Script Execution (Absolute and Relative) 

• Slow Query Execution 

• Slow Function Execution 



Appendixes 

207 

• Excess Memory Usage (Absolute and Relative) 

5. Apply Caching to boost Web application performance: 

• Define Dynamic Content Caching: Performance | File View 

(or from the Site Analysis results). 

• Apply Partial Page Content Caching APIs (see Tutorial) 

6. Configure Acceleration to save code compilation time: 

• Acceleration Settings: Performance | Settings 

• Acceleration Blacklist: Performance | File View 

7. Configure Compression to consume less bandwidth: 

• Compression Settings: Performance | Settings 

• Compression Blacklist: Performance | File View 

Important: Deactivate compression entirely if the server is set to handle 

compression (Performance |Settings | File Compression). 

8. Configure Optimization optimize script and detect encoded files: 

Platform | Dashboard | Configure PHP Settings | Zend | Zend Optimizer 

9. Benchmark Web application, to view optimization boost: 

Performance | Testing | Analyze Site – Run Performance Tool 

 

Appendix D - Event Aggregation Mechanism 

Introduction 

This appendix covers the event aggregation mechanism in the Central Server. It will try to answer the 

fundamental question: "When are two events considered to be of the same origin (or cause) and 

therefore reported as one?"  

Event properties  

To answer this question we first have to define the different properties (or attributes) that define an 

event. Here is a list of the attributes that are used for aggregation along with a short definition:  

 Event type - the type of the error that triggered the event (PHP error, Function error etc'). 

Perhaps the most important property since it also determines which other properties will be 

compared.  

 Source file, Line number - the name of the PHP file and the line that contains the code that 

triggered the event. This file may not be the file that the user requested. Not all events have 

code location - e.g., "slow script" events and other events related to the whole script do not.  

 Function name - the name of the function that contains the code that triggered the event. If 

the event happened in the global scope it's reported in the 'main' function.  

 Location - one of two: either the server id of the server that triggered the event or the group 

id if the server belonging to an aggregated group.  

 Aggregation Hint - this is a string that is supplied by the user to differentiate between pages 

that have the same URL but different parameters. If the user did not supply a hint the default 

hint is an empty string (The limit for Aggregation hints is 255 chars, longer hints will not be 

aggregated).  

 Error text - the error text that was attached to the event.  



Zend Platform for i5/OS User Guide  

208 

 Script id - refers to the record for the script that the user requested (i.e., derived from 

original request URL).  

 Severity - the severity of the event - currently, has two levels - regular and severe.  

Another property that is taken into account is the event status. Only events that are not closed are 

aggregated.  

Events are not aggregated when they are one of the following: 

 Events of different types.  

 Events that happened on different non-aggregated servers. 

 Events with different aggregation hints.  

 Events with different severity.  

Zend Error Events  

The following properties must be equal for events that are of type "zenderror":  

1. Type (note: this is a Zend error type, like E_WARNING, not monitor error type)  

2. Source file  

3. Line number  

4. Function name  

5. Location  

6. Aggregation hint  

The Error text attribute must be 75% similar. (To learn more about text similarity read 

http://uk.php.net/manual/en/function.similar-text.php)  

Function Error Events  

The following properties must be equal for events that are of type "funcerror" or "dberror":  

1. Source file  

2. Line number  

3. Function name  

4. Location  

5. Aggregation hint  

If one of the events has an Error text attribute than the Error texts must be the same (not similar!).  

Long Function Events 

The following properties must be equal for events that are of type "longfunction" or "longquery":  

1. Script id  

2. Source file  

3. Line number  

4. Function name  

5. Location  

6. Aggregation hint  

7. Severity  



Appendixes 

209 

Custom Events 

The following properties must be equal for custom events:  

1. Type (this is the first parameter user provides)  

2. Severity  

3. Event text  

4. Source file  

5. Line number  

Additional Events 

The rest of the events are aggregated according to following attributes if two conditions are met:  

1. The event type is one of the following: "devmem", "memsize", "devscript", "outsize" or 

"longscript".  

2. The event has a script id attribute  

For these events the following attributes must be equal:  

1. Type  

2. Script id  

3. Location  

4. Severity 

 Appendix E – Zend Platform Support 

Zend Platform Support 
Zend Platform Support provides Zend Product owners and prospective Zend Product owners with 

information regarding: System Requirements, Installation Instructions, General FAQ, Quick Start 

Guide and much more. 

Visit: http://www.zend.com/support/support_platform.php 

Zend Support Center 

The Zend Support Center is your online destination for information and assistance for Zend's best-of-

breed PHP products and technologies: 

 Knowledge Base 

 Support FAQ 

 Submit a Support Ticket 

Visit: https://www.zend.com/support/index.php 



Zend Platform for i5/OS User Guide  

210 

Support Tool 
The Zend Support Tool gathers server configurations and setup information. This is used to aid in the 

support process to troubleshoot support issues and provide comprehensive and efficient support.  

The type of information collected is as follows (partial list): 

The type of information collected it as follows (partial list): 

 php.ini (content and location) 

 httpd.conf (content and location) 

 Results of phpinfo() on the server  

 Output of 'df' 

 Output of 'uname -a' 

 All of the various logs our products generate (installation log, etc.)  

 Output of 'ls -lR of /usr/local/Zend/Platform' (The install_dir) 

Use the support tool wizard to create, gather and send information regarding your Server's 

configuration and setup. 

The information collected by the Support Tool can be stored and distributed in several 

ways: 

1. Submit a ticket to Zend.com support  

2. Collect information and save it in an archive  

3. Collect information and send it by e-mail 

The support tool is accessed from Platform Administration by going to:  

Platform | Dashboard | Configure & Management Tools | Support Tool 

In case of problems during Installation or later on when using Platform Administration, the Support 

Tool can be run from: 

Unix: <Installation_dir>/bin/support_tool.sh 

Windows: <install_dir>\bin\support_tool.bat 

Getting Support 
The Zend Support Center allows users to benefit from other user's experiences by viewing Knowledge 

Base articles, participating or viewing posts made to one of the product User Forums. Easily access 

the Support Center from the online help by clicking the Support button.  

 



Appendixes 

211 

Appendix F – zend.ini Configuration Settings 

The following table lists the zend.ini directives. Directives marked with YES do not require restarting 

the server apply changes. 

Accelerator Directives  

Directive Reload 

"zend_accelerator.max_wasted_percentage"  YES  

"zend_accelerator.max_warmup_hits"  YES  

"zend_accelerator.consistency_checks"  YES  

"zend_accelerator.force_restart_timeout"  YES  

"zend_accelerator.perform_timings"  YES  

"zend_accelerator.validate_timestamps"  YES  

"zend_accelerator.max_cached_filesize"  YES  

"zend_accelerator.revalidate_freq"  YES  

"zend_accelerator.min_free_disk"  YES  

"zend_accelerator.php_extensions"  NO*  

"zend_accelerator.user_blacklist_filename"   NO* 

"zend_accelerator.compress_blacklist_filename"  NO*  

"zend_accelerator.compression"  NO  

"zend_accelerator.compress_all"  NO  

"zend_accelerator.enabled"  NO  

"zend_accelerator.output_cache_enabled"  NO 

"zend_accelerator.max_accelerated_files"  NO 

"zend_accelerator.mmap_base_file"  NO 

"zend_accelerator.httpd_uid"  NO  

"zend_accelerator.memory_consumption"  NO 

"zend_accelerator.allow_noshm"  NO 

"zend_accelerator.output_cache_config"  NO 

"zend_accelerator.output_cache_dir"  NO  

"zend_accelerator.use_cwd"  NO  

"zend_accelerator.preferred_memory_model"  NO  

"zend_accelerator.dups_fix"  YES  

Monitor Directives  

Directive Reload 

"zend_monitor.max_var_len"  YES  

"zend_monitor.warmup_requests"  YES  

"zend_monitor.load_sample_freq"  YES  

"zend_monitor.rotate_freq"  YES  

"zend_monitor.reconnect_timeout"  YES  

"zend_monitor.watch_functions"  NO*  

"zend_monitor.watch_results"   NO* 

"zend_monitor.collector_host"   NO 



Zend Platform for i5/OS User Guide  

212 

"zend_monitor.collector_port"  NO 

"zend_monitor.log_dir"  NO  

"zend_monitor.server_key"  NO 

"zend_monitor.server_cert"  NO  

"zend_monitor.collector_cert"  NO  

"zend_monitor.enable"  YES 

"zend_monitor.error_level"  YES  

"zend_monitor.error_level.severe"  YES  

"zend_monitor.silence_level"  YES  

"zend_monitor.max_script_runtime_load_cutoff"  YES  

"zend_monitor.report_variables_data"  YES 

"zend_monitor.max_script_runtime"  YES  

"zend_monitor.max_function_runtime"  YES  

"zend_monitor.max_memory_usage"  YES  

"zend_monitor.max_load"  YES  

"zend_monitor.max_script_runtime.severe"  YES 

"zend_monitor.max_function_runtime.severe" YES  

"zend_monitor.max_memory_usage.severe"  YES  

"zend_monitor.max_load.severe"  YES  

"zend_monitor.max_time_dev"  YES  

"zend_monitor.max_output_dev"  YES  

"zend_monitor.max_mem_dev"  YES  

"zend_monitor.max_time_dev.severe"  YES  

"zend_monitor.max_output_dev.severe"  YES  

"zend_monitor.max_mem_dev.severe"  YES  

"zend_monitor.mem_threshold"  YES  

"zend_monitor.time_threshold"  YES  

"zend_monitor.output_threshold"  YES  

"zend_monitor.event_overload_threshold"  YES  

"zend_monitor.disable_script_runtime_after_function_runtime"  YES  

"zend_monitor.tmp_dir"  NO  

"zend_monitor.longscript.enable"  YES  

"zend_monitor.longscript.enable"  YES  

"zend_monitor.longfunction.enable"  YES 

"zend_monitor.zenderror.enable"  YES  

"zend_monitor.devscript.enable"  YES  

"zend_monitor.funcerror.enable"  YES  

"zend_monitor.devmem.enable"  YES  

"zend_monitor.outsize.enable"  YES  

"zend_monitor.memsize.enable"  YES  

 "zend_monitor.load.enable"  YES  

"zend_monitor.custom.enable"  YES  



Appendixes 

213 

Debugger Directives  

Directive Reload 

"zend_debugger.allow_hosts"  YES 

"zend_debugger.deny_hosts"  YES 

"zend_debugger.allow_tunnel"  YES  

"zend_debugger.expose_remotely"  YES 

"zend_debugger.network_trace"  NO  

"zend_debugger.max_msg_size"  YES  

"zend_debugger.httpd_uid"  NO  

ZDS Directives  

Directive Reload 

"zds.enable"  YES  

"zds.mime_types_file"  NO*  

"zds.log_file"  NO  

"zds.min_file_size"  YES 

"zds.disable_byterange"  YES 

"zds.mmap_chunk"  NO  

"zds.nice"  NO  

"zds.allow_assert"  NO  

"zds.child_max"  NO  

"zds.poll_delay"  NO  

"zds.uid"  NO  

(*) Not reloaded now – maybe in future versions)  

Appendix G - Network Port Requirements 

Zend Platform utilizes several network ports for regular component operation. The Zend Platform 

installer automatically defines these ports based on default settings that are located in the zend.ini.  

To change the port settings, open the zend.ini and locate the port number (ports are assigned a 

specific directive). 

 



Zend Platform for i5/OS User Guide  

214 

The following table lists the ports by component and zend.ini directive.  

Component  Directive  Port 

Number 

Description 

Job Queue zend_jq.port  10003 Incoming connections for data 

communication, tcp. 

  zend_jq.message_server_port  10004 Incoming connections for 

messaging service, tcp. 

Monitoring zend_monitor.collector_port  10010 Incoming/outgoing traffic. 

On Central allow incoming 

traffic from nodes to port 

10010, tcp.  

On Nodes allow outgoing traffic 

to central, tcp, port 10010. 

Debugger The port number is controlled by 

the Studio Client preferences. 

 

10000 Direct connections without 

Tunneling. 

Allow outgoing connections from 

the debug server to the <studio 

client IP>, port 10000, tcp.  

Note: may require an available 

outbound tcp connection to the 

internet.  

 zend_debugger.tunnel_min_port 

(default 1024) 

 zend_debugger.tunnel_max_port 

(default 65535) 

(UNIX, LINUX i5/OS and MAC 

only) 

1024-65535 Connections using Tunneling. 

Allow connections from node to 

"tunnel server" (specify "return 

host" in Studio tunneling 

settings), to "tcp port range" 

where a "tcp port range" is 

defined. 

 

General Comments 

 The Firewall should be set to not drop idle connections between the nodes/central (internal in 

the cluster).  

 All nodes/central servers should allow connections to themselves (accept connections to 

127.0.0.1).  

 



Appendixes 

215 

Appendix H - About SNMP 
IN THIS APPENDIX... 

AVAILABLE OPERATIONS  

SNMP TRAP 

SNMP MESSAGE STRUCTURE  

THE MIB 

THE OID 

MIB FILE STRUCTURE 

ONLINE MIB VALIDATORS 

USING NET-SNMP 

OTHER SOURCES OF INFORMATION 

 

SNMP (Simple Network Management Protocol) is a method of monitoring devices or applications from 

a single location, without the need to check each device/application at any given time.  

This is done by having an SNMP agent running on each of the monitored devices. A  NMS (Network 

Management Software/Station) is then installed on a central machine to monitor the activity. 

The Rational behind this method is to enable the user (in most cases, the system administrator) to 

use the NMS in order to 'operate' the monitored devices. 

The SNMP agent can inform the NMS about any occurrence. 

Communication between the SNMP agent and the NMS is done using UDP, which makes SNMP 

somewhat unreliable and it is up to the SNMP implementation to make sure messages reach their 

destination. 

Available Operations  
The SNMP protocol defines five basic operations (later SNMP include more):  

1. Get  

2. Get-Next  

3. Get-Response  

4. Set  

5. Trap  

The first four operations are available to the NMS and are used to control a monitored device. 

The last operation (Trap) is used by the SNMP agent in order to inform the NMS about an occurrence 

the device. Traps are employed by Zend Platform’s Event Actions and therefore, will be further 

described. 

SNMP Trap 
The SNMP Trap is used by the SNMP agent in order to inform the NMS about an occurrence on a 

device (the same device on which it is installed). An occurrence can be anything ranging from: 

“detecting a new device”, “device shut down”, “application crash” or “computer temperature is high”. 

This facilitates the purpose of sending a trap, which is to transmit only essential data to indicate there 

is a problem. The other SNMP commands (like 'set' and 'get') can then be used to investigate the 

actual details of the occurrence. 

Note: 

The following section describes the SNMP V2c message structure which is only slightly different than 

the SNMP V1 message structure.   



Zend Platform for i5/OS User Guide  

216 

SNMP Message Structure 
All SNMP messages have the same general structure. They are constructed of Message Headers and 

the PDU (Protocol Data Unit). 

Note: 

The PDU may differ in some SNMP operations.  

Message Headers 

Message Headers contain the following information:  

 Version number - Specifies the SNMP version in use (for example '2c').  

 Community name – Specifies the access environment for a group of NMSs (for example 

'public').  

Community names serve as a form of authentication (much like a password).  

For example, when the NMS gets an SNMP Trap from an SNMP agent, it checks if the community 

name that was sent with the trap is authorised to send this trap from this agent.  

The PDU 

The PDU is the format for sending data in an SNMP operation. 

SNMP PDU structure is as follows:  

 PDU type  

 Enterprise OID  

 Agent Address  

 Generic trap number  

 Specific trap number  

 Up-time  

 Variable-binding  

The MIB 
MIB (Management Information Base) is a hierarchically organized collection of information definitions. 

MIBs are a collection of managed objects that are identified by object identifiers. 

A managed object represents an element of a device. Managed objects are a collection of one or more 

object instances, which are essentially variables. 

Why do we need the MIB ? 

The MIB server as a common ground for both the NMS and the SNMP agent (MIB is saved in a text file 

in a specific structure). 

The MIB defines the entities that take part in SNMP communication. For example, traps are set in the 

MIB file with the definition of the data that can be sent in the trap. This allows the NMS that gets the 

trap from the SNMP agent to read and interpret the data. 



Appendixes 

217 

The OID 
The OID (Object ID) is a set of numbers, separated by '.', that together assemble a unique identifier 

that identifies a managed object in the MIB hierarchy. 

The MIB hierarchy can be depicted as a tree. For example, the OID: 1.3.6.1.4.1.20815  broken down 

to each of it's elements, means: 

 1 - ISO 

 3 - Identified Organization 

 6 - DOD 

 1 - Internet 

 4 - Private 

 1 - Enterprise 

 20815 - Zend 

The first six elements in the OID are constant. Each organization can register itself with an institute 

called 'IANA' (Internet Assigned Numbers Authority). Registration with IANA is not mandatory, but 

strongly recommended in order to maintain order in the Hierarchy (making sure each organization 

uses it's own unique OID). 

Registration with IANA is free from: http://www.iana.org/cgi-bin/enterprise.pl).  

Each element in the MIB file can be (and is eventually) represented by OID. However, using a MIB file 

allows enables to represent each element in a more 'human readable' way.  

MIB file structure 
The following is an example of a basic MIB file: 

MIB-NAME DEFINITIONS ::= BEGIN 

IMPORTS 

enterprises 

FROM RFC1155-SMI 

OBJECT-TYPE, NOTIFICATION-TYPE 

FROM RFC-1212; 

zend OBJECT IDENTIFIER ::= { enterprises 20815 } 

SimpleTrapExample NOTIFICATION-TYPE 

    STATUS current 

    DESCRIPTION "This is a simple trap example" 

::= { zend 1 } 

ComplexTrapExample NOTIFICATION-TYPE 

    STATUS current 

    DESCRIPTION "This is complex trap example with variable-binding in it" 

    OBJECTS { IntVariable, StringVariable } 

::= { zend 2 } 

IntVariable OBJECT-TYPE 

    SYNTAX INTEGER 

    MAX-ACCESS accessible-for-notify 

    STATUS current 

    DESCRIPTION "This is an integer variable" 

::= { ComplexTrapExample 1 } 

StringVariable OBJECT-TYPE 

    SYNTAX STRING 



Zend Platform for i5/OS User Guide  

218 

    MAX-ACCESS accessible-for-notify 

    STATUS current 

    DESCRIPTION "This is a string variable" 

::= { ComplexTrapExample 2 } 

END 

The first line defines the name of the MIB (in the sample file, it's called 'MIB-NAME'). Then, the 

required imports are set (the 'enterprise' import actually sets all the required data up to the 

'enterprise' level, which is one level above our organization level, in this case - one level above Zend). 

From this point, in order to mention the '1.3.6.1.4.1' OID level, all we need to write is 'enterprise', as 

illustrated below. 

It also imports two 'element' definitions: the NOTIFICATION-TYPE (this is actually a 'trap-type' that 

defines a trap) and OBJECT-TYPE (which defines variables). 

Once the required data is imported, we can start setting our MIB. 

Now we define 'zend' to be the OID 1.3.6.1.4.1.20815 by stating zend OBJECT IDENTIFIER ::= { 

enterprises 20815 } 

From this point on, we start setting the trap types and the variables.  

More detailed information on how to write MIB files can be found in RFC-1212 

(http://www.faqs.org/rfcs/rfc1212.html)  

Online MIB Validators 
Once an MIB file is written it is prudent to pass the MIB file through a MIB validator engine. The 

validator engine will check to see if the MIB file is written correctly and validates to content.  

There are several online validator engines such as*: 

• Online MIB Validator (http://www.muonics.com/Tools/smicheck.php) 

• MIB module validation (http://www.simpleweb.org/ietf/mibs/validate/) 

*Zend Technologies does not indorse or recommend these sites and the links herein are simply provided as examples of online 

providers.  

Using NET-SNMP 
NET-SNMP is a free implementation of the SNMP protocol. NET-SNMP that can be obtained from 

http://www.net-snmp.org/. 

Sending an SNMP Trap 

Sending a trap using NET-SNMP is quite easy once you know the parameters you need to send and 

how. 

SNMP traps are sent using the snmptrap command. The syntax is: 

snmptrap -v 2c -c <community string> -M <MIB directory> -m <MIB name> <NMS 

address:port> <uptime>  

         <<MIB name::>Trap name> <<MIB name::>var> <type> <value> 

The following describes the different parameters:  

 -v - The version of the SNMP protocol to use in order to send the trap.  

 -c - The community string to be sent with the trap.  

 -M - TThe directory where the MIB is located. If all you want is to add another directory to 

the MIB dir list, you should place the plus sign (+) before the directory, like this: -M 

+/my/MIB/dir. Multiple MIBs directories are seperated by ':'.  



Appendixes 

219 

 -m - The MIBs to be used. If all you want is to add another MIB to the list of MIBs used, you 

should place the plus sign (+) before the MIB name, like this: -m +MY_MIB_NAME. Multiple 

MIBs are separated by ':'.  

 NMS address:port - The address and port of the target NMS machine.  

 uptime - The time passed since the machine came up or since something happened on the 

machine. You can send an empty string as the uptime.  

 Trap name - The name / type of the trap you are sending. Generic trap is only used in SNMP 

V1, therefore, we only specify the 'specific trap' type. Specifying the MIB name before the 

trap name (followed by '::') is used to avoid instances where two traps have the same name 

in different MIBs.  

 Variable binding variables - The following elements must be sent together or not at all ! 

(Several variables can be sent in each trap).  

• var -The name of the variable in the MIB. Specifying the MIB name before the variable name 

(followed by '::') is used to avoid instances where two variables have the same name in 

different MIBs.  

 type - The type of the variable being sent. Several types are available:  

• i - for INTEGER  

• u - for UNSIGNED  

• c - for COUNTER32  

• s - for STRING  

• x - for HEX STRING  

• d - for DECIMAL STRING  

• n - for NULLOBJ  

• o - for OBJID  

• t - for TIMETICKS  

• a - for IPADDRESS  

• b - for BITS  

 value - The value for the variable being sent.  

Catching an SNMP Trap (emulating NMS) 

In order to catch a trap, you need an NMS, and in case you don't have one installed, you can use the 

'snmptrapd' command.  

The command syntax is as follows:  

snmptrapd -P -M <MIB directory> -m <MIB name> 

The following describes the different parameters:  

 -P - This parameter prints formatted incoming traps to stderr (resulting in 'interactive' 

output). This option is deprecated and can (should) be replaced with -f -Lo.  

 -M - Same as in the snmptrap command.  

 -m - Same as in the snmptrap command.  



Zend Platform for i5/OS User Guide  

220 

Other Sources of Information 

 SNMP tutorial - Explains what is SNMP and how it works. 

 NET-SNMP project home page (http://www.net-snmp.org/) 

 Some short tutorial about SNMP  (http://www2.rad.com/networks/1999/snmp/index.htm) 

 Another, more detailed, tutorial about SNMP 



Zend Platform for i5/OS User Guide 

221 

Index 

# 

# of Requested...................................... 123 

# of Served........................................... 123 

A 

Absolute ........................................... 25, 29 

accelerated ....................................... 41, 49 

acceleration ...................................... 41, 50 

Acceleration Blacklist................................50 

Acceleration Blacklist Files.........................41 

Accelerator Memory .................................39 

Accelerator Performance Tuning Level ...... 111 

Action.....................................................33 

Action Rule parameters.............................33 

Action Types ...........................................33 

Actions Rules...........................................33 

Add Jobs............................................... 123 

Add/Edit Users.........................................67 

Additional Rules ............................25, 26, 30 

admin.....................................................70 

Aggregate Hint ........................................84 

Aggregate Hints.......................................92 

Aggregate servers....................................79 

Aggregation ............................................31 

Aggregation Rules....................................84 

Alert Rule................................................25 

Alert Rule event types ..............................25 

Alert Rules ..............................................22 

Alert Window..................................... 79, 81 

Alerts .....................................................81 

All ..........................................................79 

All Files........................................39, 41, 49 

ALLGET...................................................45 

allowed...................................................66 

Allowed Hosts..........................................61 

Allowed Hosts for Tunneling ......................61 

ALLSESSION ...........................................45 

Always....................................................61 

Always Report Errors ................................26 

Analyze Site ...................................100, 102 

Apache ...................................................30 

Apache Server MaxClients .........................39 

API..............................................25, 31, 92 

Array......................................................45 

audit trail ................................................84 

authentication .........................................58 

Authentication Information ....................... 58 

Auto Detection Port.................................. 57 

Automatically Connect on Startup.............. 58 

average.................................................. 25 

Average Time in Queue ...........................123 

Average Waiting Time .............................123 

B 

Backtrace ............................................... 84 

bandwidth .............................................140 

Bar graphs.............................................. 94 

Benchmark ............................................101 

Blacklist ............................................49, 50 

Blacklisted .............................................. 41 

bottlenecks ........................................25, 28 

Bridge ...................................................146 

Broadcasting Port .................................... 58 

C 

Cache .................................................... 41 

Cache Cleaner......................................... 45 

Cache Lifetime ........................................ 45 

Cached........................................ 39, 41, 49 

cached files........................................41, 49 

Caching.................................................. 45 

caching conditions ..............................41, 45 

Cancel.................................................... 41 

central machine....................................... 70 

central registration .................................. 70 

Change Event Report Information.............. 90 

Change Server .......................................111 

Choosing and Defining Alert Rules ............. 25 

Clean ..................................................... 41 

Client .......................................... 56, 57, 61 

Client Debug Port .................................... 58 

Client IP ................................................. 58 

Close Event........................................84, 93 

Close Selected......................................... 81 

Code Acceleration ............................. 39, 101 

Code Acceleration Enabled........................ 39 

Code Acceleration Settings ....................... 39 

communication........................................ 57 

communication tunnel ................... 56, 57, 58 

Completed Jobs......................................123 

compressed .......................................41, 49 

compression ................................ 41, 49, 50 

Compression Blacklist .............................. 50 



Zend Platform for i5/OS User Guide  

222 

Compression Blacklist Files........................41 

Compression Test ....................100, 101, 102 

Compression Test results ........................ 102 

concurrent jobs...................................... 140 

Concurrent Requests .............................. 140 

configuration ...........................................63 

configurations..........................................41 

Configure Alert Rules.......................... 22, 79 

Configure communication..........................57 

Configure performance .............................39 

Configure Preferences for Tunneling ...........57 

Configuring Zend Studio Client Tunneling 

Settings ...............................................58 

Confirm Password ....................................67 

Connection errors ....................................30 

Content ..................................................45 

Content Caching .................................... 101 

Cookie ....................................... 45, 57, 101 

CPU........................................................25 

CPU Load ................................................84 

create a New Group .................................68 

critical situations......................................31 

Current Blacklisted Files............................50 

Current Existing Users ..............................66 

Current Jobs.......................................... 123 

Custom................................................. 111 

Custom Event..........................................25 

Custom events .................................. 31, 84 

D 

daemon ................................................ 146 

data .......................................................39 

Database .......................................... 30, 79 

database cleanup.....................................81 

Database Error .................................. 25, 30 

database function errors ...........................30 

Database Maintenance..............................93 

Database selection errors..........................30 

databases ...............................................30 

Deactivate compression ............................49 

debug............................................... 56, 57 

Debug Mode............................................58 

Debug Preferences ...................................58 

Debug URL..............................................84 

Debugger.....................................58, 61, 84 

Debugger Server URL ...............................58 

Default Cache Lifetime........................ 39, 45 

default configurations ...............................22 

Default Dynamic Caching Conditions ..........39 

Define Action Types ................................. 33 

Define Alert Rules.................................... 22 

Define Cache .......................................... 41 

Define Caching Settings ........................... 41 

Delete Event ......................................84, 93 

Delete Selected ....................................... 81 

Denied Hosts .......................................... 61 

deny tunneling ........................................ 61 

diagnostic............................................... 84 

directives................................................ 63 

Disable an Action Rule.............................. 33 

Dismatch................................................ 45 

Do not Cache .......................................... 41 

document root ........................................ 41 

Download ..............................................140 

Download Server ....................................140 

Download tab.........................................140 

Download Test .......................................140 

Dummy File ............................................ 58 

Duration................................................101 

Dynamic................................................. 45 

Dynamic Caching Enabled....................39, 45 

Dynamic Content Caching....... 39, 45, 49, 101 

Dynamic Content Caching Settings ............ 39 

E 

edit...................................................56, 66 

Editing a User ......................................... 67 

Editing Groups ........................................ 68 

Editing Users........................................... 67 

e-mail ....................................... 33, 84, 100 

Email Report ........................................... 33 

Encrypt Communications using SSL ........... 58 

End User ................................................ 79 

Enhanced ..............................................111 

Environment ..........................................146 

Error Description ..................................... 84 

error-reporting criteria ............................. 26 

Errors .................................................... 26 

establish................................................. 56 

establish a communication tunnel .............. 57 

Event ..........................26, 27, 28, 29, 30, 31 

Event Data ............................................. 84 

Event List ............................................... 81 

Event Name............................................ 79 

Event Occurrence Info.............................. 84 

Event Report................................ 33, 84, 90 

Event Reports ....................................33, 84 

Event Summary ...................................... 79 



Index 

223 

Event Summary table ...............................79 

Event Type........................................ 22, 81 

Event Types ............................................22 

events ..............................30, 31, 79, 81, 92 

Events From...................................... 22, 81 

Excess Memory........................................29 

Excess Memory Usage ........................ 25, 29 

expandable lists.......................................63 

extensions ..............................................39 

Extreme................................................ 111 

F 

File Compression......................... 39, 49, 101 

File Settings ............................................41 

File View .................................................41 

Filtering ............................................ 79, 81 

Filtering Alert Rules..................................22 

Filtering Table Data ..................................79 

Fine Tune Caching Conditions ....................41 

firewall ...................................................57 

Full Filepath Identification .........................39 

Full Page Content Caching.........................45 

function ..................................................30 

Function Data..........................................84 

Function Error .........................................25 

function errors................................... 27, 30 

Function Execution...................................28 

Function Usage........................................31 

functions.................................................27 

G 

General database function errors ...............30 

Get ........................................... 45, 57, 101 

Getting Support ..................................... 209 

Global Events ..........................................92 

global variable .........................................92 

graphical representatio .............................79 

graphical representation ..................... 79, 94 

Graphs ...................................................79 

Group............................................... 66, 79 

Group Name............................................66 

GUI ........................................................70 

gzip........................................................49 

H 

Handle Groups.........................................66 

Hard errors .............................................26 

health.....................................................31 

Host .......................................................79 

HTTP Authentication ..........................58, 101 

HTTP Server ............................................41 

I 

IDE........................................................ 56 

Ignore Event......................................84, 93 

Ignore Selected....................................... 81 

Included Files.......................................... 84 

Inconsistent Output Size .....................25, 31 

information............................................209 

Integration ........................................57, 84 

investigating ........................................... 84 

IP .....................................................56, 61 

J 

Java Bridge............................................146 

Java Environment ...................................146 

Java Home.............................................146 

Java Status............................................146 

Java Vendor...........................................146 

Java Version ..........................................146 

Job-Queue .............................................120 

Jobs......................................................120 

L 

Last Download .......................................140 

Load Average.....................................25, 31 

load balancer .......................................... 57 

Log ........................................................ 39 

Log File .................................................. 39 

login ...................................................... 66 

M 

management .......................................... 66 

Manual Override ...................................... 93 

Match..................................................... 45 

Max Clients............................................140 

MaxClients.............................................. 39 

Maximum Accelerated Files ....................... 39 

Maximum Cache Size ..........................39, 45 

Maximum Cached File Size...................39, 45 

Memory.................................................. 29 

Memory Reclaim Threshold ....................... 39 

Minimum File Size.................................... 39 

Minimum Free Disk space ......................... 45 

Minimum Free Diskspace .......................... 39 

Modified File Detection ............................. 39 

Monitor .............................................22, 31 

monitor_set_aggregation_hint .................. 92 

Monitoring .........................................39, 79 

multiple users ......................................... 66 

N 

N/A Test Results.....................................102 

Net Mask ................................................ 61 



Zend Platform for i5/OS User Guide  

224 

Never .....................................................61 

New Group..............................................68 

New Users...............................................67 

node ................................................ 39, 61 

None ................................................ 39, 49 

Normal ................................................. 111 

Notices ...................................................26 

O 

on demand..............................................56 

On-Demand ............................................56 

On-Demand Communication......................56 

Only Cached Files............................... 39, 49 

operator .................................................26 

OS Name .............................................. 146 

OS Version............................................ 146 

output site ..............................................79 

Output Size .............................................25 

P 

parameters ....................................... 26, 57 

Partial Page Content Caching.....................45 

Password ............................... 58, 63, 67, 70 

Password Administration...........................70 

Password Specifications ............................70 

Password Structure ..................................70 

Performance...............41, 100, 101, 102, 120 

performance configurations .......................41 

Performance Lifecycle...............................22 

Performance Monitoring Event .. 25, 26, 28, 29 

Performance Test................................... 102 

Performance Test results ........................ 102 

Performance Tuning ............................... 111 

Permission Group.....................................66 

permissions....................................... 67, 68 

Permissions Group ...................................67 

PHP.................................................. 63, 79 

PHP Error .......................................... 25, 26 

PHP events..............................................79 

PHP function............................................28 

PHP Intelligence.......................................79 

PHP Section.............................................63 

PHP Settings ...........................................63 

php.ini....................................................63 

Pie .........................................................94 

Port.................................................. 56, 58 

Preserve Event ........................................84 

Preserve Selected ....................................81 

Previous Test Results ............................. 102 

processes..............................25, 26, 31, 120 

Product directives .................................... 63 

Production .............................................. 27 

profile ......................................... 56, 57, 84 

Profile URL.............................................. 84 

Q 

QA....................................................26, 27 

Query Execution .................................25, 30 

Queue...................................................123 

Queues .................................................120 

R 

Refresh .................................................146 

regexp ................................................... 45 

registration............................................. 70 

Regular Expression .................................. 45 

Regular Expressions Format...................... 45 

Relative....................................... 25, 26, 29 

Relative Events ..................................29, 31 

Remove.................................................. 66 

Reopen Event.......................................... 84 

Reopen Selected...................................... 81 

reports ................................................... 39 

REQUEST................................................ 45 

Requested URL........................................ 84 

requests ................................................. 26 

resolving events ...................................... 84 

Restart..................................................146 

Restore Defaults...................................... 41 

rule-based notification.............................. 33 

Rules ................................................22, 33 

S 

Save ...................................................... 41 

scheduling .............................................120 

script ....................................................101 

scripts...............................................29, 31 

Selective ................................................ 61 

Send a report via e-mail ........................... 33 

sending the information............................ 33 

Server...............................................45, 79 

Server by name....................................... 79 

Server Name........................................... 79 

Server Response Timeout ......................... 58 

SESSION ......................................... 45, 101 

settings .............................. 39, 61, 120, 123 

severe event ........................................... 27 

Severity ................................................. 81 

Severity Level ......................................... 84 

Show Source Code................................... 84 

silence operator....................................... 26 



Index 

225 

silenced ..................................................26 

simulation............................................. 140 

Site Analysis ......................................... 102 

Site Analysis Report ............................... 102 

slow function ...........................................25 

Slow Function Execution ..................... 25, 28 

slow queries ............................................25 

Slow Query .............................................30 

Slow Query Execution....................25, 28, 30 

Slow Script Execution ......................... 25, 26 

Slow Script Execution Absolute ..................25 

Slow Script Execution Relative...................25 

solve problems ...................................... 209 

source code.............................................84 

Source Info .............................................84 

Specify Return Host .................................58 

SSL ........................................................58 

SSL encryption ........................................58 

Start .................................................... 146 

Statistics........................................123, 146 

Status ....................................... 81, 84, 146 

Stop..................................................... 146 

Structure ................................................70 

Studio ....................................................56 

Studio Client ................................56, 58, 61 

Studio Client Tunneling.............................58 

Studio Server ..........................................61 

Studio Server parameters .........................57 

Studio Server Settings..............................61 

Submit a report to a Specified URL.............33 

Support ................................................ 209 

Support Center ...................................... 209 

Support Tool ......................................... 209 

supported databases ................................30 

Suppress ................................................25 

Suspend ............................................... 123 

System Passwords ...................................70 

T 

table ......................................................79 

Test ........................................ 57, 101, 140 

Test Download................................100, 140 

Test Report ........................................... 140 

Test Results ............................101, 102, 140 

Test URL.................................. 84, 100, 101 

Testing ...................................100, 102, 140 

Time Filter ..............................................81 

Title .......................................................84 

Tool ......................................................209 

Tree View ............................................... 41 

Tuning ..................................................111 

Tunnel Target Host .................................. 58 

Tunnel Target Port ................................... 58 

Tunneling ...............................56, 57, 58, 61 

U 

Undo...................................................... 41 

Ungrouped.............................................. 79 

un-zipped ............................................... 49 

Update Blacklists ..................................... 41 

Update the Blacklist ................................. 50 

URL .........................................33, 101, 140 

User....................................................... 66 

User Forums ..........................................209 

User Management...............................66, 68 

User Name ........................................58, 67 

users ..................................................... 67 

V 

variable matches ..................................... 45 

Variables .............................. 45, 84, 90, 101 

variables data ......................................... 90 

vhost ..................................................... 84 

Virtual Host ............................................ 81 

Virtual Hosts ........................................... 41 

Virtual Hosts List ..................................... 41 

W 

Warnings................................................ 26 

Watched Functions................................... 27 

Web application......................................101 

wildcards ................................................ 61 

X 

XML ....................................................... 84 

XML data ................................................ 33 

XML Report ............................................. 33 

Z 

ZDS ......................................................140 

Zend Download Server ...................... 39, 100 

Zend Error .............................................. 84 

Zend Monitor .......................................... 22 

Zend Product directives ............................ 63 

ZEND Section.......................................... 63 

Zend Studio .......................................58, 84 

Zend Studio Client ..............................56, 58 

Zend Studio IDE...................................... 57 

Zend Studio Integration ........................... 57 

zend.ini .................................................. 63 

 


	 About Zend Platform for i5/OS
	Navigation
	Central Control Center
	 Standard and Enterprise Servers

	 Zend Platform Overview
	Environments
	 Architecture
	 Central Server
	 Nodes
	 Central-Node Communication
	Platform Administration, a Single Point of Access 


	 Cluster Management
	 Server Management
	 Group Management
	VHost Management
	Restricting Access to Virtual Hosts

	PHP Intelligence
	Configuring Event Triggers
	Why Configure Event Triggers?
	Filtering Event Triggers
	 Defining Event Triggers 
	 Choosing and Defining Event Triggers
	Slow Script Execution Absolute
	Slow Script Execution Relative
	PHP Error
	Function Error

	Watched Functions File Event Types
	 Slow Function Execution
	 Excess Memory Usage (Absolute and Relative)
	 Database Error
	Slow Query Execution
	 Inconsistent Output Size
	Load Average
	Custom Events

	 Define Event Actions
	Define Actions
	Define Action Rules



	 Performance
	Configuring Performance
	Performance Tab
	Settings
	Code Acceleration Settings
	 Dynamic Content Caching Settings
	File Compression

	 File View
	Tree View
	Tree View - Virtual Hosts List

	File View - Dynamic Content Caching
	Define Caching Settings: 
	 Modify File Settings
	Fine Tune Caching Conditions

	Define files to Blacklist
	Dynamic Content Caching
	 Full Page Content Caching 
	Dynamic Content Settings
	 Default Caching Conditions
	Using Regular Expressions to Define Cache Conditions

	Default Dynamic Caching Condition Parameters 



	 File Compression
	 Blacklists
	Configuring the Zend Download Server (ZDS)
	Manual Mode
	Transparent Mode 
	Testing the ZDS
	Running a Test
	Understanding Test Results


	 Configuration Tab
	Tunneling (Communication Settings)
	 Configuring Preferences for Tunneling
	Configuring Zend Studio Tunneling Settings
	Configuring the Communication Tunnel in Zend Studio
	 Debug Preferences


	Studio Settings
	Debugger Tunneling Port Limits

	PHP Configuration
	Configuring Settings for a Server (Node)


	 Users and Groups
	User Management
	Adding and Editing Users
	Adding a User
	Editing a User

	Adding and Editing Groups
	Add/Edit a Group
	 User Settings


	Passwords
	Password Structure
	System Passwords
	Password Specifications




	 Licenses
	License Management
	About Zend Platform Licenses
	Managing Licenses
	 Acquiring a License



	 The Problem Resolution Lifecycle 
	The Problem Resolution Lifecycle
	Implementing the Problem Resolution Lifecycle
	 Creating Events 
	Configuring Events
	Disabling Events (Triggers)
	List Entry of Watched Functions

	Finding Events that Interest You

	 PHP Intelligence
	System Health
	Aggregation Groups

	 Event List
	Working with the Event List
	 Change Virtual Host

	Event Details
	Understanding Event Details
	General Information
	Event Occurrence Info
	Zend Studio Diagnostics
	Event Context
	 Function Data
	Variables
	Backtrace
	Included Files

	Show Source Code
	 Event Administration
	Controlling Information Displayed in an Event
	 Change Event Details
	Variables
	Customizing Events
	Custom Events
	Event Callbacks

	Register and Un-register User Event Handlers 
	Aggregate Hints
	Event Aggregation Rules




	Database Maintenance
	 Graphs
	Graph Behavior
	 Generating Graphs


	 Performance
	Overview 
	 Performance Lifecycle 
	 Implementing the Performance Lifecycle
	Benchmark - Site Analysis
	Testing
	Test URL
	 Additional Variables
	Analyze Site (Benchmark)
	Benchmark Web Applications:
	Test Results 
	Performance Test
	Compression Test
	Show Last Test Reports 


	Event Trigger Settings and Analysis
	Calibrating Event Triggers for Performance Optimization
	Investigating Performance Related Events
	Profiling PHP Code with Zend Studio
	Understanding Profiler Results


	Performance Optimization Tools
	When to Apply Optimization Tools 
	Content Caching (Dynamic)
	Caching with the File View
	Caching with the Performance Test Reports
	Caching Alternatives

	Code Acceleration
	Accelerator Duplicate Functions Fix
	 Reset Accelerator

	Code Compression
	 Setting Code Compression

	Zend Optimizer

	Tuning
	Accelerator Performance Level Descriptions
	 Tuning Zend Platform for Optimal performance on i5/OS

	 Web Services
	Introduction
	System Requirements for Web Services
	 General Tasks
	 Get/Set Actions
	 Add/Remove Servers Actions
	 Event Handling

	 Job Queues
	Introduction
	 Job Queues
	The Job Queue API

	 Job Queue Tab (Job Management)
	Queues
	Queue Details and Statistics 
	Queue Operations

	 Jobs
	 Job Details
	 Job Details Page Components
	Job Details Page Buttons:

	Job Queue Settings
	 View Queue Settings
	 Edit Queues
	Job Queue Server

	Creating Jobs

	 Zend Download Server (ZDS)
	Configuring the Zend Download Server (ZDS)
	Manual Mode
	Transparent Mode 
	 Testing the ZDS
	Running a Test
	 Understanding Test Results
	 Download Server Settings

	Test Download
	Viewing Download Test Results 



	 Java Bridge
	About Zend’s Java Bridge Technology
	Zend Platform Node 
	J2EE Application Server 
	Added Value
	Operating and Configuring Zend Platform’s Java Bridge

	Java Status Page
	Locating an Existing Java Version
	Working with the Java Bridge User Interface
	Configuring the Java Bridge

	Common Tasks
	Usage Scenarios
	Activities
	 Example 1: Typical Code
	Example 2: A Case Study Java Bridge Performance
	Example 3: Case Study in Management Integration


	 Usability Issues
	Chain Functions Call
	Exceptions
	Java Array/Hashtable Objects
	Iterators


	 BIRT Reports
	About BIRT Reports
	The BIRT Reports Tab
	 Report Examples
	Report Code


	Setting-Up the BIRT Report Engine
	Zend Platform BIRT Report Examples
	 Sales Invoice (html) 
	 Top Selling Products (embedded html) 
	Product Catalog (PDF) 
	Product Catalog (using caching) 



	Zend Platform APIs and Directives
	Zend Platform APIs
	Accelerator Functions
	Output Cache Functions
	Monitor Functions
	ZDS (Zend Download Server) 
	 Java Bridge
	Job Queue
	Global Functions and Constants 
	 Queue Class
	 Job Class 
	BIRT Reports


	APIs and Directives
	Zend Platform Directives
	Accelerator Directives 
	 Monitor Directives 
	 Zend Monitor Event Types
	Platform Administration Directives 
	Collector Center Directives 
	Debugger Directives 
	 ZDS Directives 



	 Zend Platform Built-In Services and Extensions
	About
	Setup Tool 
	Running the Setup Tool

	Services
	Java Bridge
	 Job Queues
	 Cache Cleaner
	 Collector Center

	 Extensions
	zend_extension_manager.optimizer
	zend_extension_manager.download_server (not applicable in Windows)
	zend_extension_manager.platform
	Zend Platform Action (Windows Only)
	Zend Platform Pinger (Windows Only)
	 Zend Platform Collector Center 
	Zend Platform Node Collector


	 Tutorials
	Integrating Existing and Legacy Applications
	Calling an EJB on Websphere from PHP
	 Partial and Preemptive Page Caching
	Partial Page Caching APIs
	Output Caching
	Data Caching

	Action Based Partial Page Caching
	Conditional Partial Page Caching
	Button Based Partial Page Caching



	 Appendixes
	Appendix A – Troubleshooting Zend Platform
	Web Server
	Accelerator
	The Communication Tunnel 
	Troubleshooting Zend Studio
	Troubleshooting Zend Platform


	 Appendix B – Configuration Check List
	Appendix C – Performance Lifecycle Check List
	Appendix D - Event Aggregation Mechanism
	Introduction
	Event properties 
	Zend Error Events 
	Function Error Events 
	Long Function Events
	 Custom Events
	Additional Events


	 Appendix E – Zend Platform Support
	Zend Platform Support
	Zend Support Center
	 Support Tool
	Getting Support

	 Appendix F – zend.ini Configuration Settings
	Accelerator Directives 
	Monitor Directives 
	Debugger Directives 
	ZDS Directives 

	Appendix G - Network Port Requirements
	 Appendix H - About SNMP
	Available Operations 
	SNMP Trap
	 SNMP Message Structure
	Message Headers
	The PDU

	The MIB
	Why do we need the MIB ?

	 The OID
	MIB file structure
	Online MIB Validators
	Using NET-SNMP
	Sending an SNMP Trap
	Catching an SNMP Trap (emulating NMS)

	 Other Sources of Information


	Index

