

Zend PlatformTM

w w w . z e n d . c o m

User Guide

Zend Platform V3.6

By Zend Technologies, Inc.

ii

Table of Contents
Zend Platform ... 1

Contribute to the Documentation ...1
Introduction...3

Preface ... 3
Software and Hardware Requirements .. 4
About Platform... 5

Navigation .. 5
A Central Control Center... 5
Standard and Enterprise Servers ... 6

Support Tool.. 7
Getting Support... 8

Change Server ... 8
Overview..10

Environments .. 11
Architecture... 13
Central Server ... 14
Nodes ... 15
Central-Node Communication... 17

Platform Administration, a Single Point of Access... 17
Getting Started...18

Configuration Check List.. 20
Performance Lifecycle Check List .. 21

Performance Management Server ..22
Platform Tab.. 23

Dashboard .. 24
Status .. 25
Preferences... 26
User Management.. 28
Cluster Management .. 35
License Management.. 42

PHP Intelligence ... 47
Event Trigger Settings and Analysis ... 48
Why Configure Event Triggers?.. 50
Finding Events that Interest You.. 50
The Problem Resolution Lifecycle ... 51
System Health .. 53
Graphs ... 55
Event List ... 57
Event Triggers... 62
Event Types.. 65
Security ... 83
Event Actions .. 85
Event Details... 89

Performance .. 104
Overview .. 104

Table of Contents

iii

Performance ... 106
Performance Lifecycle .. 107
Implementing the Performance Lifecycle... 109
Performance Optimization Tools .. 110
Configuring Performance .. 111
Performance Console ... 113
Settings ... 114
Content Caching .. 120
URLs .. 141
Testing... 143
Tuning ... 149
Tuning Performance in i5 OS... 150
Zend Optimizer ... 152

Configuration Tab... 153
Studio Settings.. 154
Tunneling (Communication Settings).. 156
Configuring Preferences for Tunneling .. 157
Configuring Tunneling with Studio ... 159
On Demand Connection.. 165
Debugger Tunneling Port Limits... 166
PHP Configuration.. 167
PHP Info ... 170
Clone Wizard... 171

Web Services ... 172
System Requirements .. 172
General Tasks ... 173
Get/Set Actions ... 174
Add/Remove Server Actions.. 175
Event Handling.. 176
Using Web Services ... 179

Enterprise Server ...181
Session Clustering .. 182

What is Session Clustering? .. 182
Session Clustering and HA (High Availability) .. 184
Session Clustering Statistics.. 186
Session Clustering Settings... 188
The Importance of Session IDs.. 190
Session Clustering Storage Models... 191
Defining Storage Models ... 193
Fine Tuning Session Clustering .. 193

Job Queues.. 194
Jobs... 195
Job Queue API... 196
Job Management ... 198
Queues .. 199
Jobs Tab... 202
Job Details.. 205
Job Queue Settings.. 207

Zend Platform User Guide

iv

Zend Download Server (ZDS) .. 210
Configuring the Zend Download Server (ZDS) ... 210
ZDS Settings... 213
Testing the ZDS .. 214
Test Download .. 216
Understanding Test Results... 217

Integration Server ...218
Java Bridge.. 219

About the Java Bridge Technology ... 220
Operating and Configuring .. 222
Java Status Page ... 223
Common Tasks.. 226
Usability Issues ... 231

BIRT Reports ... 235
Using BIRT.. 235
BIRT Reports Tab .. 236
Setting-Up the BIRT Report Engine .. 237
BIRT Report Examples.. 238

Reference...242
Useful Links ... 242
Zend Platform Built-In Services and Extensions.. 243
Setup Tool... 244

Running the Setup Tool .. 244
Services .. 245

Java Bridge... 245
Session Clustering ... 245
Job Queues... 246
Cache Cleaner ... 247
Collector Center .. 247

Extensions... 249
zend_extension_manager.optimizer ... 249
zend_extension_manager.download_server (not applicable in Windows) 249
zend_extension_manager.platform .. 249
zend_extension_manager.monitor ... 249
Zend Platform Action (Windows Only) .. 250
Zend Platform Pinger (Windows Only) .. 250
Zend Platform Collector Center.. 250
Zend Platform Node Collector.. 250

Deprecated Caching APIs and Directives.. 251
Deprecated Functions... 251
Deprecated Directives .. 251

APIs.. 252
Accelerator Functions ... 253
Output Cache Functions.. 253
Zend Cache Functions .. 254
Full Page Caching Functions .. 255
Monitor Functions .. 256
ZDS Functions... 258

Table of Contents

v

Java Bridge Functions .. 259
Job Queue Functions .. 260
BIRT Report Functions.. 268

Directives .. 269
Accelerator Directives .. 270
Zend Cache Directives.. 272
Full Page Caching Directives.. 273
Monitor Directives.. 275
Platform Administration Directives ... 282
Collector Center Directives.. 283
Debugger Directives... 284
ZDS Directives .. 285
Java Bridge Directives .. 286
Session Clustering Directives .. 287
Job Queue Directives ... 290

Tutorials.. 292
Integrating Existing and Legacy Applications... 293
Calling an EJB on Websphere from PHP .. 296
Partial and Preemptive Page Caching.. 297
About SNMP.. 305

Appendices .. 311
Appendix A - Troubleshooting Zend Platform... 312
Appendix B - Event Aggregation Mechanism.. 317
Appendix C - Zend Platform Support .. 319
Appendix D - Network Port Requirements ... 320

Index ... 323

1

Zend Platform

Contribute to the Documentation

Your feedback is important to us. Therefore, at the bottom of each page is a link for sending e-mails

directly to the Zend documentation team.

You can also let us know your thoughts and suggestions on Zend documentation by participating in

our Zend Documentation Satisfaction survey:

http://www.zoomerang.com/survey.zgi?p=WEB226L47RWR8P

http://www.zoomerang.com/survey.zgi?p=WEB226L47RWR8P

Zend Platform User Guide

2

Disclaimer

The information in this document is subject to change without notice and does not represent a

commitment on the part of Zend Technologies Ltd. No part of this manual may be reproduced or

transmitted in any form or by any means, electronic or mechanical, including photocopying, recording,

or information storage and retrieval systems, for any purpose other than the purchaser’s personal

use, without the written permission of Zend Technologies Ltd.

All trademarks mentioned in this document, belong to their respective owners.

© 1999-2008 Zend Technologies Ltd. All rights reserved.

Zend Platform User Guide issued January2008.

DN: ZP-UG-010108-3.6-001

Zend Platform

3

Introduction

Preface

Zend Platform is a diverse, runtime-environment management application. As such, a greater

understanding of the underlining concepts is required to benefit from the Zend Platform capabilities

and features. This User Guide reflects these concepts by providing a workflow driven description of

Zend Platform’s features.

The Overview is an introduction to Zend Platform describing the background and architectural design

of Zend Platform along with who should read this guide and how to maximize the benefits of deploying

Zend Platform in your environment.

Getting Started describes the different configuration options and workflow implementations of Zend

Platform including implementing the Performance Lifecycle.

Performance Management Server describes the features and functionality included with the

”Performance Management Server”. This part includes functional descriptions of the performance

management components, which include: Platform (Management Console), PHP Intelligence,

Performance and Configuration.

Enterprise Server describes the features and functionality included with the ”Enterprise Server”. This

part includes functional descriptions of Enterprise grade components, which include: Session

Clustering, Job Queues and SNMP Traps.

Integration Server describes the features and functionality included with the ”Integration Server”. This

part includes functional descriptions of Integration components, which include: Zend Platform’s Java

Bridge and advanced reporting facilitated by Actuate’s BIRT Reporting Tool.

The Reference section provides additional reference information. This part includes a list of APIs and

Directives, Tutorials and Appendixes.

Zend Platform User Guide

4

Software and Hardware Requirements
Zend Platform requires that each installation of Zend Platform (Central and Node) meet the following

hardware and software specifications:

Hardware Requirements

 Minimum 350MB Hard Disk space for installation

 4GB HD space required for a typical live system with 1000-2000 events

 Recommended minimum CPU - Pentium 4, 3.2GHz

 Recommended 1GB RAM for a Central Server with 3 Nodes

 Network card

Software Requirements

To be sure you have the most current details regarding the Platform compatibility with platforms, PHP

versions, and Zend's other products refer to the information available online at:

http://www.zend.com/store/products/zend-platform/system-requirements.php. The Zend team

regularly updates this information.

http://www.zend.com/store/products/zend-platform/system-requirements.php

Zend Platform

5

About Platform
Platform is the only robust PHP production environment that ensures your applications run smoothly

at all times.

Designed for IT personnel and businesses that require industrial-strength applications in highly

reliable production environments, Platform offers high performance and scalability to provide your

customers with the best possible Web experience and response time.

Platform uniquely guarantees application up time and reliability through enhanced PHP monitoring and

immediate problem resolution that removes the troubleshooting guesswork out of the equation and

replaces it with peace-of-mind.

You spent time and money developing your state-of-the-art PHP application, now it is time to ensure

its up and running.

Navigation

Platform is a browser-based application. The general layout of functionality is in a tabbed view where

each tab represents a unique functionality.

 Platform Tab - Management functionality

 PHP Intelligence - Monitoring and event generation capabilities

 Introduction to Performance - Performance enhancement tools

 Configuration - Integration settings and PHP configurations

 Session Clustering - Session Clustering statistics

 Zend Download Server (ZDS) - Configure settings for the Zend Download Server to offload

large downloads

 Job Queues - Streamline offline processing

 Integration - Incorporate a Java environment to enrich your applications

The tab colors indicate the server type that is determined by the license type you have. The pale blue

tabs belong to the Performance Management Server and the darker blue tabs belong to the Enterprise

and Integration servers.

A Central Control Center

Platform handles clusters and standalone servers. As such, users can use the Administration Console

to transparently navigate between the Central Server and nodes.

Users stay on the central server until they select a tab that prompts to select a server; as soon as a

server is selected, subsequent actions and settings will be applied to the selected server only.

A status bar showing the date, time and login name will also display the name of the server on which

the user is currently working.

When no server name appears, you are on the Central Server. Not only can you configure and monitor

activity by server you can also clone settings from one server to be applied to one or more servers

providing enhanced management fluidity in your clustered environment.

Zend Platform User Guide

6

Standard and Enterprise Servers

Platform is distributed as either a Performance Management Server or an Enterprise Server. Choosing

the appropriate server depends on your organization's requirements.

The following table lists the different servers and their respective functionality:

Feature Performance

Management

Enterprise Comments

Platform

This includes the Dashboard, Server Status

indicator, User and license Management.

PHP Intelligence

This includes the System Health overview,

Event management and the Graph

generator.

Performance

This includes performance management

features: Code Acceleration, Dynamic

Content Caching, File Compression,

Updating Virtual Hosts and testing URLs.

Configuration

This includes the advanced configuration

features for configuring your PHP directly

from Platform Administration and enabling

the connectivity with Studio to provide a

complete development lifecycle.

Session

Clustering

Enterprise Session management for cluster

based environments.

Job Queues

Improve response time during interactive

web sessions and utilizing unused resources.

Integration

This includes Java Bridge connectivity and

integration with business intelligence

reporting using Actuate's BIRT reporting

system.

ZDS

This includes settings and performance

tests.

Zend Platform

7

Support Tool
The support tool is accessed from the Dashboard as a link in the "Configuration and Management

Tools" Section.

The Zend Support Tool gathers server configurations and setup information. Information can be

gathered from more than one server at a time depending on your preferences.

The gathered information is used to aid in the support process to troubleshoot support issues and

provide comprehensive and efficient support.

The type of information collected is as follows (partial list):

The type of information collected it as follows (partial list):

 php.ini (content and location)

 httpd.conf (content and location)

 Results of phpinfo() on the server

 Output of 'df'

 Output of 'uname -a'

 All of the various logs our products generate (installation log, etc.)

 Output of 'ls -lR of /usr/local/Zend/Platform' (The install_dir)

Use the support tool wizard to create, gather and send information regarding your Server's

configuration and setup.

The information collected by the Support Tool can be stored and distributed in several

ways:

1. Submit a ticket to Zend.com support

2. Collect information and save it in an archive

The support tool is accessed from Platform Administration by going to:

Platform | Dashboard | Configuration and Management Tools | Support Tool

In case of problems during Installation or later on when using Platform Administration, the Support

Tool can be run on a specific server from:

Unix: <Install_dir>/bin/support_tool.sh

Windows: <install_dir>\bin\support_tool.bat

Note:

Multi server (distributed) information collection is not available from the command line.

Zend Platform User Guide

8

Getting Support

The Zend Support Center allows users to benefit from other user's experiences by viewing Knowledge

Base articles, participating or viewing posts made to one of the product User Forums. Easily access

the Support Center from the online help by clicking the Support button.

Change Server

The Change Server button is accessed from the Main Info bar (located at the top of each tab) and is

available from features that can be applied to nodes belonging to the cluster.

Platform provides a single user interface for activities that are performed both on the Central (the

cluster governing component) and nodes (servers that have been assigned to the central). The

transparent user interface provides users with the ability to transition between servers.

Note:

The Change Server screen is a pop-up. If you have a Pop-up Blocker activated on your browser, make

sure that pop-ups are allowed for the Platform URL or deactivate the Pop-up Blocker entirely.

The user interface is divided into actions that are performed on the central server and actions that are

performed on a selected node.

The actions performed on the Central server are as follows:

 Platform (administration menu): Dashboard, Status, Preferences, User Management, Cluster

Management and license Management.

 PHP Intelligence: System Health, Graphs, Event List, Event Triggers Event Actions and

Security.

 Session Clustering: Statistics and Settings.

 Job Queues: Queues, Jobs and Settings.

 Integration: BIRT Reports (The Java Bridge must be up and running on the central server in

order to render the reports).

The actions performed on a selected node are as follows:

 Performance: Console, Settings, File View, URLs, Testing and Tuning.

 Configuration: Studio, PHP Configuration, PHP Info and Clone wizard.

 Integration: Java Bridge.

 ZDS: Settings

The Server Indicator displays the name of the server on which you are currently working, the user

name used to log-in, a log-out option and the current date and time.

When on a node, the Server Indicator will add an additional option to change the server. This option

will not appear on when performing actions on the central server.

The following procedure describes how to change the server on which you are working. The "Change

Server" option opens a tree that displays all the available servers that the currently logged-in user is

permitted to view. Servers can be displayed in the tree by Groups or alphabetically.

Zend Platform

9

To change a server:

1. Click "Change Server".

2. Choose a Server from the list and click Select.

3. If you cannot see a specific server, it is possible that you do not have the correct

user permissions, in that case go to: Platform | User Management and check to see

if your User has a "Server Restriction". Alternately, contact your System

administrator to grant access to this server through your Platform user permissions.

Platform will "remember" the last server selection for the next log-in.

Zend Platform User Guide

10

Overview

Contents:

Environments Nodes

Architecture Central-Node Communication

Central Server

Zend Platform is a complete runtime environment for managing and maintaining mission critical and

enterprise PHP applications from a single, centralized location.

This environment consists of cluster management; performance management, monitoring, detection

and recovery; and Java integration.

Zend Platform improves both the end user experience and IT productivity by combining cluster and

performance management; automated monitoring and detection capabilities; and powerful Java

Integration capabilities into one integrated environment.

Zend Platform provides the PHP-enabled enterprise with the ability to:

 Manage every aspect of PHP from a single, Web-based interface

 Quickly drill-down to critical issues to resolve and optimize

 Create user defined thresholds and error values

 Configure servers from a remote management station and to perform controls at a click of a

button

 Clone servers: one-to-one and one-to-many

 Monitor performance improvement with Code Acceleration, Content Caching and File

Compression

 The Zend Download Server

 Integrate with Java system elements over Platform’s fully implemented PHP/Java Bridge.

Zend Platform is a central management solution and run-time environment for:

 Configuration Management - Platform’s architecture provides full control of the PHP

application platform, including performance management settings, event thresholds, etc.

allowing administrators to set up groups of multiple identical servers via:

• Remote server configuration.

• Clone configurations or parts of configurations from one server to another or from

one server to an entire group of servers.

 Performance Management * - Platform is equipped with three management modules for

tracking and improving speed and responsiveness of Web applications. These include Code

Acceleration, Dynamic Content Caching and File Compression.

 PHP Intelligence - Platform features new technology that detects and recovers crashes,

whether they occur in PHP itself, the database software, or your own application. The

integrated suite of monitoring, detection and recovery features allows users to drill down to

critical issues and optimizations quickly and easily.

 Session Clustering * - Zend Platform is equipped with a comprehensive solution for

synchronizing session data across a cluster. Protect your applications from session corruption

and erratic application behavior while providing an additional performance boost (up to x10).

Zend Platform

11

Immediately implement this solution to existing PHP code and attain linear scalability. Fully

integrated with load balancers the Session Clustering module is a mechanism to ensure

session data quality and integrity.

 Job Queues - Zend Platform’s Job-Queue provides PHP production environments with a

standard approach to streamline offline processing. A Job-Queue server is services the Job

Queue that provides the ability to reroute and delay the execution of processes that are not

essential during user interaction with the Web Server.

 BIRT Reports - Advanced reporting capabilities: have been integrated into Zend Platform, to

provide enterprise users with expandable reporting functionality. Actuate's reporting

application is the chosen application, together with Zend Platform's Java Bridge it can extract

reports from Java libraries and generate reports on any information. This solution is

essentially a PHP API to the Actuate BIRT 2.0 run time environment that supports both PHP 4

and PHP 5.

 Java Bridge - The Platform PHP/Java Bridge module provides PHP centric companies with a

well-rounded environment making sure that the organization benefits from the ”best of both

worlds”. Be it, existing investments in J2EE application servers that require this solution, or

to provide a means for organizations - if they choose, to bridge language limitations by use

of Java applications. The Java Bridge is not limited to interactions strictly with J2EE and

legacy systems, the Platform PHP/Java Bridge also provides the ability to interact with plain

Java objects.

Environments
A typical environment for running any Web application consists of three basic components: Web

servers for running the Web application, a load-balancer to handle traffic and a Firewall to protect

form unauthorized entry into the hosting network.

Zend Platform, once introduced to this kind of an environment becomes a control environment for web

server activity.

In an environment where a single web server manages activity, Zend Platform resides on the web

server to provide system health and analysis information.

Moreover, environments that include several web servers, as clusters servicing a single Web

application or a collection of clusters servicing different Web applications, Zend Platform serves as a

single control center for system health information, cluster management and runtime process

optimization.

The Zend Platform system diagram below, demonstrates where Zend Platform components typically

reside in the PHP- enabled enterprise.

Zend Platform User Guide

12

Figure: Zend Platform System Diagram

The system diagram illustrates the following points:

 Zend Platform’s Standalone Cluster Server is installed on a Web server.

 The System Administrator controls all Platform Central functions. Providing the ability to work

with Platform from a single workstation using a standard Web Browser.

 Nodes host resident PHP-based services that fill requests from the Web.

 Load Balancing directs requests to available servers in the web farm.

Note:

Platform Server and the Platform nodes are separate entities; therefore, it is important to configure

Firewall and security devices to allow communication between the nodes and the Platform Server.

Identify which ports are in use and if necessary, open these ports on your Firewall.

To read more about working with Firewalls and Nat go to ”Configuring Zend Studio Tunneling

settings”.

Zend Platform

13

Architecture
Platform is a complete environment that provides rich functionality by interacting with the existing

PHP in a simple and generic way. Platform is a non-intrusive extension to an existing environment

with minimal overhead that helps obtain enhanced performance and reliability.

Platform extends the Zend Engine with the organization's execution environment, providing the

platform on which to base Web services, business to commerce applications, content-management,

Intranet and business-to-business applications.

Figure: Platform and the PHP-enabled Enterprise

Platform consists of two deployed components the Central Server (consists of a Server + Node) and

the Node component.

The Central Server is a central management component for governing node configurations and script

performance information. The Central Server can be deployed as a standalone Platform environment

for a single server and for this reason, contains fully functioning node components. However, the

prominent application for Platform is multiple server/cluster based environments.

The Central provides a single point of access and control for multiple nodes.

Nodes are web servers that run with Apache and service a PHP application. The Platform components

are installed on the node to report script, database and system activity to the Central Server. Each

node installation also includes a debugger that is integrated with Studio extended code management

features such as profiling, debugging and correcting code directly on a node.

In essence, similar components are installed on the Central Server and the Nodes since the Central

Server also performs as a node. However, the Central Server and the Node Components employ

different modules for their overall activity.

Zend Platform User Guide

14

Central Server
The Central Server provides the necessary functionality for handling event information, node

management and performance monitoring.

No matter how many nodes are registered in the cluster, from the users point of view Central provides

an efficient and useful single point of entrance. Central resides on the Central Server and is in charge

of displaying Platform Administration for Central Server and Node configuration. The Central is the

main communication component for collecting, storing, configuring and receiving information from the

nodes.

Communication is carried out via regular TCP/IP communication and event information is stored in a

dedicated database. Zend Central governs the PHP application performance and monitoring features

including configurations for nodes, PHP and event collection.

The following illustration is a representation of Platform Server components:

Figure: Platform Server Components

The Central Server is a central management component for managing and configuring nodes. The

Central server component is installed once. All subsequent installations are for node components that

are registered to this server in the installation process. Standalone environments base on one server

only require the central component that also includes all the node components necessary for working

in a single server environment.

The installation includes three main components:

1. Central that includes information collection and functionality: Performance, PHP Intelligence

and the Java Bridge.

2. The Database is the main repository for event information collected from all registered nodes.

3. One of the main components of Central is the Collector. This component collects and

aggregates information from nodes in the cluster that is displayed in Platform's PHP

Intelligence module. The collector collects and aggregates information according to

configurations applied to a single server or to several servers (grouped servers).

Zend Platform

15

Nodes
Nodes are the web servers that run PHP. Nodes are individual servers that service a Web application

and a collection of nodes are referred to as a cluster.

The central server governs clusters.

The following components need to be on each Node:

 Basic:

• A supported operating system (Linux, Unix, Mac, i5/OS and Windows)

• A Supported Web Server (Apache, IIS)

 PHP:

• PHP version 4 or 5

 Zend Products

• Platform

• Download Server

• Monitor

• Optimizer

• Debugger

Nodes have to be registered with the Central Server by a user with administrator rights in order to

enable communication between the Node and the Central Server. There are two ways to register a

Node to the Central Server: through the installation process or by manually registering the Node.

Platform Nodes consist of several components that report information to the Central Server and

provide debug capabilities for PHP scripts residing on a node.

 A Collector Component for transferring event information to the central

 Debug Infrastructure for debugging live pages directly from a node (This option is supported

by Studio)

The following illustration is a representation of Platform Node components:

Figure: Platform Node Components

Zend Platform User Guide

16

The Collector component listens to the running processes and collects event information (For more on

Events go to ”Configuring Events”), to be reported to the Central Server over a regular TCP/IP

connection). However, only if the node and the central have the same key will the Central Server

agree to receive event information from a node’s collector (the key is generated when Nodes are

registered in the installation process or in the "Setup Tool".

The type of information the Collector listens to and collects is event information determined by Event

Rules that are configured on the Central Server. Event information is sent to the Central server where

it is aggregated according to event type (more about event aggregation can be found in "Appendix B -

Event Aggregation Mechanism"). Different Rules can be applied to different nodes in a cluster

environment or specific settings can be applied to more than one node in a cluster (by using the Clone

Server feature).

The Debugger Infrastructure is enabled via the Studio/Platform Communication Tunnel that is geared

to work in development and production environments. With the appropriate configuration, the

Debugger Infrastructure can work through Firewalls or NAT devices that may be positioned between

the Node and Studio (more about Firewall traversal can be found in ”Configuring Communication with

Studio". The Debugger Infrastructure provides full lifecycle support for editing debugging, profiling

and deploying code by enabling to view and edit Event source code in the Studio development

environment. This provides Zend Studio users with access the remote debugger via the same

communication tunnel that routs full-duplex traffic over HTTP. The Debugger Infrastructure utilizes the

Communication Tunnel, ensuring that multiple servers can be debugged through the same

Communication Tunnel at once.

Figure: Communication with Studio

Zend Platform

17

Central-Node Communication
Traffic between the Central Server and Node clusters mostly occurs from the nodes to the central

server with the nodes reporting event information through the collector component to Zend Central.

However, Platform has a Server Status feature that periodically checks the availability of each Node in

the cluster and provides up to date information regarding the components installed on the nodes.

The following diagram illustrates the communication between the Central Server and Nodes

in a Cluster:

Figure: Central Node Communication

Platform Administration, a Single Point of Access

Platform’s sophisticated architecture enables to use the Central Server as a single point of access for

node availability and configuration, enabling to configure node settings and behavior from the Central

Server itself. This connectivity is achieved by the addition of Platform Administration components on

the Nodes as well as on the Central Server in the installation process. In this process the Central

Server’s URL is specified to the Nodes as a central control unit and from that point onwards, access

and read write permissions to nodes, can be established from the Central Server.

Zend Platform User Guide

18

Getting Started

Contents:

Configuration Check List

Performance Lifecycle Check List

Platform is an out-of-the-box fully functioning product. This includes basic default settings for

monitoring events and code acceleration. At this stage (immediately after installation) Platform

already generates events and improves code generation. However, to benefit from Full-Power Cluster

Management, Development integration with Studio, Audit Trails, and much more, it is necessary to

tune Platform’s performance settings to suit your individual work environment.

In this section, basic configuration tasks are listed in chronological order beginning from initial

configuration tasks to configurations that may rely on other settings.

There are two checklists:

1. Configuration Check List - chronologically lists all the initial configuration tasks that should be

done to customize Zend Platform to suit your requirements.

2. Performance Lifecycle Check List - Lists the different stages of implementing the Performance

Lifecycle for streamlining Production and Development environments.

The initial configuration actions are:

 Cluster Management - Add the servers that you want Platform to control. Each server should

be added and then grouped to create a cluster environment to be treated as a single entity in

terms of event collection.

 Configuring Event Triggers - customize the Event Triggers to suit your working environment.

The Platform installation comes ready with default configurations; however, it is

recommended that a person with an understanding of the environments settings and

performance standards, configure Event Triggers accordingly.

 Configure Event Actions - once Event Triggers are configured, determine the actions that can

be applied to Events for using PHP Intelligence to send event information by e-mail or to a

URL.

 Performance - Adjust performance requirements as a way to benefit from Platform's

advanced performance features.

 Configure Studio / Tunneling - Platform’s tight integration with Studio provides an efficient

means for improving the development lifecycle. Environments that contain security

precautions such as Firewalls and NAT can set up Platform to provide a secure means for

obtaining integration with Studio without compromising an organization's security measures.

 Configuring PHP Settings - configure your PHP and Zend products directly from Platform.

 Clone Wizard- once all initial settings have been configured, the Clone Settings feature can

be used to apply settings to other nodes in one single step.

 User Management - Grant different levels of permissions to different users provides a means

for controlling actions performed in the environment and for enforcing work procedures. This

is the last step to customizing Platform to your working environment.

Zend Platform

19

 License Management - Manage licenses for the central server and all nodes belonging to the

cluster.

Zend Platform User Guide

20

Configuration Check List
This Check List details all the Platform configuration tasks in chronological order. This list can be

printed and used as an extra aid for setting-up Platform.

1. Configure Clusters and Groups when working in a cluster environment to enable event

aggregation over multiple servers.

Platform |Status | Manage Cluster or use the Shortcut Platform | Dashboard | Manage Cluster

2. Event Triggers, to modify default settings to suit the new environment:

PHP Intelligence | Event Triggers

Or use the shortcut Platform | Dashboard | Event Triggers

3. Configure Action Rules, to send Event Details data by e-mail or to a URL:

Platform | Dashboard | Event Actions

4. Configure Performance, to define initial performance settings for Code Acceleration, Dynamic

Content Caching, File Compression and Download optimization:

Performance | Settings

5. Configure Virtual Hosts and fine tune performance setting per file:

Performance | File View

6. Setup integration with Studio Server: Platform | Preferences and then go to Configuration |

Studio

7. Establish a persistent connection with Zend Studio for Debugging Profiling and Editing code:

Platform | Preferences

8. Configure PHP settings to customize the php.ini and zend.ini to your environment:

Configuration | PHP Configuration or use the Shortcut: Platform | Dashboard | Configure PHP

Settings

9. Use the Clone Wizard to apply configurations from one node to other nodes:

Platform | Dashboard | Clone Wizard

Alternatively use the Quick Clone buttons to apply specific performance and PHP Intelligence

settings.

10. Define User and Group permissions

Platform | User Management

Zend Platform

21

Performance Lifecycle Check List
This Check List details all the Platform Performance Lifecycle tasks in chronological order. This list can

be printed and used as an extra aid for calibrating Platform.

1. Benchmark Web application, to establish optimization-starting point:

Performance | Testing | Analyze Site - Run Performance Tool

2. Calibrate Event rules to configure PHP Intelligence events to the Web application's

performance parameters:

PHP Intelligence | Event Triggers

Or use the shortcut Platform | Dashboard | Event Actions

3. Benchmark Web application, to establish a second optimization-starting point:

Performance | Testing | Analyze Site - Run Performance Tool

4. Analyze Event Details, to pinpoint performance issues:

PHP Intelligence | Event List

Recommended: Focus on the following performance related event types:

• Slow Script Execution (Absolute and Relative)

• Slow Query Execution

• Slow Function Execution

• Excess Memory Usage (Absolute and Relative)

5. Apply Caching to boost Web application performance:

• Define Dynamic Content Caching: Performance | File View

(or from the Site Analysis results).

• Apply Partial Page Content Caching APIs (see Tutorial)

6. Configure Acceleration to save code compilation time:

• Acceleration Settings: Performance | Settings

• Acceleration Blacklist: Performance | File View

7. Configure Compression to consume less bandwidth:

• Compression Settings: Performance | Settings

• Compression Blacklist: Performance | File View

Important: Deactivate compression entirely if the server is set to handle compression

(Performance |Settings | File Compression).

8. Configure Optimization optimize script and detect encoded files:

Platform | Dashboard | Configure PHP Settings | Zend | Zend Optimizer

9. Benchmark Web application, to view optimization boost:

Performance | Testing | Analyze Site - Run Performance Tool

Zend Platform User Guide

22

Performance Management Server

Contents:

The Problem Resolution Lifecycle Performance

PHP Intelligence Web Services

The Performance Management server is a comprehensive set of tools for boosting PHP script

performance and managing PHP applications.

The Performance Management Server components are:

 Platform (Management Console) - Includes the Dashboard, Preferences, license Management

and User Management.

 PHP Intelligence - Event configuration, handling and management.

 Performance - Code Acceleration, Dynamic Content Caching, Benchmark and File

Compression.

 Configuration - PHP and server configurations.

 Web Services - Use Platform using Web Services.

Zend Platform

23

Platform Tab
Contents:

Dashboard About License Management

Status Manage License

Preferences Acquiring a License

The Platform tab is a central management viewpoint for monitoring the health and availability of PHP

applications and Zend products.

Platform includes the following configuration and management features:

 Dashboard - configure groups of servers, distribute configurations, and observe servers/node

statuses.

 Status - displays system information about the servers managed by Platform.

 Preferences - view and edit the global settings for the Platform installation and the Monitoring

page.

 User Management - displays information about the users currently defined in the system. It

also provides shortcuts to the User Management functions supported by Platform.

 Cluster Management- manage clusters from a single location. Options include server, group

and virtual host management.

 License Management - manage licensing for the central server and related nodes.

Zend Platform User Guide

24

Dashboard

The Dashboard tab is accessed from the main Platform tab.

Use the Dashboard to configure groups of servers, distribute configurations, and observe the status of

the servers/nodes.

The main Platform tab Includes:

 Events at a Glance - An event display table that displays latest events by filters and ID and

a graphical representation of event statistics (see Graphs for more information).

 Configuration and Management Tools - configure and manage settings and servers:

• Configure Event Actions - Define settings for sending event information via e-mail or URL.

• Configure Event Triggers - Change the Event triggers on a selected server.

• Configure PHP Settings - Change PHP Settings on a server.

• Support Tool - Gathers comprehensive system information and allows users to open a

Support Ticket.

 Useful Links

• Zend Technical Support - Connects users to the Zend Support Center, where they are able

to submit a Support Ticket.

• Zend Store - Links users to Zend's on-line store, to purchase Zend products.

• Zend Platform - Connects users www.zend.com for additional details and information about

Platform.

• Zend Framework - Connects users to the Zend Framework.

http://www.zend.com/en/support-center/
http://www.zend.com/store/
http://www.zend.com/store/products/zend-platform/

Zend Platform

25

Status

The Status tab is accessed from Platform | Status.

This tab displays system information about the servers managed by Platform in a sortable table.

Information can be sorted by: Server Name, Group or Status.

Use the Filter option to reduce the amount of information displayed on screen.

Information can be filtered by Group and Specific components such as: Operating System, Web

Server, PHP Version, Zend Engine Version, Java Bridge, Optimizer etc.

 Status: Each Server is periodically checked for availability.

 The Status indicator changes color according to the server's current status.

 There are four statuses: Green = OK / Red = Error / Yellow = Notice / Grey = N/A.

 Status information includes the reason for the status and the time stamp (the

Central's last attempt to access the Server). This information is added to the

indicator's tool-tip (To view the Tool-tip, hover over the status indicator with the

cursor).

 Zend Products: Each product is detailed in the table displaying the product's Version and

Status.

 The Status indicator may show the following statuses:

Green = OK / Orange = Notice / Red = Error / Grey = N/A

 The product status indicator includes information about the status in the Tool-tip (To

view the Tool-tip, hover over the status indicators with the cursor).

Zend Platform User Guide

26

Preferences

The preferences tab is accessed from Platform | Preferences.

The Preferences tab is the location for viewing and editing Platform global settings

Use this tab to configure settings for:

 Platform (including integration with Studio)

 Mail Settings for sending Events

 License Settings

 Job Settings

 Monitoring Settings

 PHP ini settings

Preferences Fields and Functions

Zend Platform Settings:

 Auto Detection Port - Indicates that Studio will listen to the local host on the signified Auto

Detection port - Default=20080.

 Test - Verifies if Studio is listening to this port. This test should only be run when Studio is

running.

 Method of passing the Studio Server parameters - Defines the means for passing

communication parameters from Platform to Studio. Choose COOKIE or GET method.

E-mail Settings

Configuring these settings ensure that messages will not be filtered as "Spam". If these settings are

not defined all Event e-mails will be sent with the system default sender name (If these settings are

already configured in your php.ini those settings will be used unless you configure different settings in

the preferences and then the settings in the preferences override the php.ini settings).

In windows and i5:

 SMTP server - The IP of the server delivering the e-mail.

 SMTP port - The port handling the e-mail transfer.

 E-mail Account - The e-mail account that will be identified in the message as the "sender".

In UNIX, MAC, Linux etc.:

 E-mail Account - The e-mail account that will be identified in the message as the "sender".

Note:

Mails are sent using your Operating System's default sendmail configuration.

License Expiration Notice Settings:

 Notify by e-mail when licenses are about to expire - When selected, users are

automatically notified when product licenses are about to expire, default=Off.

 Number of days to notify before license expires - Enter the prior notice period (in days)

for sending a license expiration notice.

Zend Platform

27

Jobs Settings

 Maximal number of Jobs displayed in a page - The number of Jobs to display per page in

the Jobs tab (If there are more than the number of Jobs to display a message asking to

refine the Jobs settings in Platform | Preferences will be displayed).

 Auto refresh the Jobs - The page refresh rate in seconds for Jobs information.

 Auto refresh the Queues - The page refresh rate in seconds for Queues information.

Monitoring Settings:

 Number of events in a page - Defines the number of Events that are displayed in the

Event List. Default=300 (accepted values 1 to 1000)

 Auto-refresh the Event List - Number of seconds between automatic refresh of the Event

List screen.

 Auto-refresh the System Health - Number of seconds between automatic refresh of the

System Health screen.

 Auto-refresh the Platform Dashboard - Number of seconds between automatic refresh of

the Zend Central Console.

PHP ini Settings

 Zend password for php.ini - The password used for the ini_modifier. If left empty the

password is the same as the one defined in the installation process. Use this field to change

the password and update the password in the php.ini. changes here will not affect the login

password to change that, go to Adding and Editing Users.

Note for Core users: These changes will also change Core's ini_modifier and login

password. You can also change the password in Core and it will change Platform's

ini_modifier password (Platform's login will stay the same).

 Password Confirmation - Retype your password.

Zend Platform User Guide

28

User Management

Contents:

Adding and Editing Users User Settings

Adding and Editing Groups Password Administration

Granting different levels of permissions to different users provides a means for controlling actions

performed in the environment and enforcing work procedures.

Central’s User Management tab includes Platform’s multiple users functionality. This feature set allows

different users to login to Platform.

Each user has a set of permissions that are defined by the system administrator that

determine:

 Data the user is allowed to view

 Zend products the user is allowed to access

 Actions the user is allowed to perform

The User Management tab is accessed from Platform | User Management.

The User Management tab displays information about the users currently defined in the system. It

also provides shortcuts to the User Management functions supported by Platform.

Figure: User Management

The information fields and functions that make up the User Information workspace are as follows:

 User Name - Displays the name of the User who is currently logged in to Platform.

 Existing Users - A list of users currently defined in the system.

 Group Name - Users are defined within the system as belonging to a particular group and

not as independent entities. This is the name of the Permission Group to which the User

belongs.

 Has Server Restriction - The specific user is restricted from performing certain actions on a

specific server.

Zend Platform

29

 Handle Groups - Selects the group whose attributes you wish to edit or remove entirely (is

added when there is more than one group). Edit/Remove - Allows you to edit or remove

entirely the settings for a specific User of a specific Group.

 Add a New User - A shortcut to the Add a New User Wizard.

 Add a New Group - A shortcut to the Add a New Group Wizard.

Click here to see how to use user permissions to restrict access to virtual hosts.

Zend Platform User Guide

30

Adding and Editing Users

The Add and Edit user options are accessed from Platform | User Management.

The following describes how to Add/Edit Platform users under the following conditions:

1. The master user adding new users must have administrative level permissions in the system.

2. New users must be added to an existing group. Users are defined as belonging to a particular

group - not as independent entities.

Adding a User

The following procedure describes how to enable Administrator-level users create new users.

To add a new user:

1. Click the Add a New User button in the lower left corner of the User Management

workspace.

The Add a New User wizard opens.

2. In the Add New User wizard, define the following General User Settings:

• User Name - Enter a User Name that the User will use when logging in to

Platform Administration.

• Password - Enter a Password that the User will use when logging in to

Platform Administration.

Platform Administration Passwords, may contain, between 4-16 characters

including the following: the alphanumeric characters 'a' through 'z', 'A' through

'Z' and '0' through '9' and the special characters (-) dash, (_) underscore and

(.) period.

• Confirm Password - Confirm the Password.

• Permissions Group - Select the Permissions Group to which the New User

will be assigned from the list of Permissions Groups that are currently defined

in the system.

3. Click Next to go to the second step.

4. In the Add New User wizard (2) Select the servers that you wish to allow the New

User to access.

5. Click Finish.

The new user will be created in the database, with the defined permissions.

Note:

Added/Edited users can only view and edit events for the servers the User has permission to access.

Conversely, servers denied to the User will not appear in the server tree when the User logs in to the

system.

Editing a User

The following procedure describes how to enable administrator-level users to edit the preferences for

any User currently defined in the system. Non-administrator users can use this option to modify their

password.

Zend Platform

31

To edit user preferences:

1. Click the Edit button to the right of the user whose preferences you wish to edit.

The Edit User Wizard opens with the user’s name appearing in the User Name field.

2. In the Edit User wizard - Step 1, define the following General User Settings:

• Password - Enter a Password only if you wish to change the Password for

that User; otherwise leave the Password field empty.

• Confirm Password - Confirm the Password only if you are changing the

Password for the User.

• Permissions Group - Select the Permissions Group to which the User will be

assigned from the list of Permissions Groups that are currently defined in the

system.

3. Click Next to go to the second step.

4. In the Edit User wizard (2) screen, select the servers that you wish to allow the User

to access.

5. Click Finish.

The changes will be applied to the User settings and saved in the database.

Zend Platform User Guide

32

Adding and Editing Groups

The Group editing option is accessed from Platform | User Management.

The following procedure describes how to enable Administrator-level users to create new groups and

define user access permissions.

To create a New Group:

1. Click the Add a New Group button in the lower left corner of the User Management

workspace to open the Add a New Group dialog.

2. In the Add New Group dialog, select the preferences and permissions to assign to

the New Group from the table.

3. Enter a name for the New Group.

Remember to click Save to save changes or create a Group in the database and register its settings.

The following is a list of group preferences and their definitions:

 Group Name - Enter a name for the New Group

 Delete an event - Enables the Delete Event option, for deleting events in the Event Details

screen and the Event Window.

 Ignore an event - Enables the Ignore Event option, for ignoring events in the Event Details

screen and the Event List Window.

 Close an event - Enables the Close Event option, for closing events in the Event Details

screen and the Event List Window.

 Reopen an event - Enables the Reopen Event option, for reopening events in the Event

Details screen.

 Preserve an Event - Enables the Preserve Event option, for preserving (saving) events in the

Event Details screen and the Event List Window.

 See the event context data in Event Details - Allows users belonging to group to view the

event internal data (variables, included files) from the Event Details screen.

 See the event source code in Event Details - Allows users to view the event source code in

the Event Details embedded viewer.

 Use the Zend Studio Integration - Allows users to view, profile and debug event source code

in Zend Studio.

 Changing Zend Platform Settings (in the Preferences) - Allows users to change preferences in

Platform | Preferences.

 Configure and change the Event Actions - Allows users to configure and change Event Actions

from the Event Actions screen.

 Configure and change the Event Action Rules - Allows users to configure and change Action

Rules from the Define Action Types/Rules screen.

 Manage Server - Allows users to manage servers from the Manage Cluster screen.

 Manage VHosts - Allows users to manage Virtual Hosts from the Manage Cluster screen.

Zend Platform

33

 Manage Groups - Allows users to add and change group settings from the Manage Clusters

screen.

 Cloning configuration between servers - Allows users to clone server configuration to

additional servers from the Clone Wizard.

 Update all Information - Allows users to update server data.

 Use Support Tool - Allows users belonging to the group to access the Support Tool from the

Support Tool link.

 Go into the Event Triggers Section - Allows users to configure and change Event Triggers

from the Event Triggers screen.

 Configure PHP settings - Allows users to configure and change PHP settings from the

Configure PHP Settings screen.

 Go into the Performance section of nodes - Allows users to access the Performance Tab for

nodes.

 Go to the Configuration section of nodes - Allows users to access the Configuration Tab for

nodes.

 Go in the Integration section of nodes - Allows users to access the Integration (Java Bridge,

BIRT Reports) Tab for nodes.

 Go into the Session Clustering section of Nodes - Allows users to access the Session

Clustering Tab for nodes.

 Go into the Queue Section - Allows users to access the Job Queues Tab.

 Manage Licenses - load and edit licenses.

 Use Web Services - Use the web Services API

 Go into the Security section of node - Grant permission to go into the specified section on a

node.

 Go into the ZDS section of nodes - Grant permission to go into the specified section on a

node.

Zend Platform User Guide

34

User Settings

User settings are retained in the system in several ways:

 User Group settings are stored in the configuration database.

 Platform's User Management Tab remembers each user’s last settings. The user’s last

settings automatically populate the component fields, when opening any of the sub-screens

and dialog boxes that make up the User Management Tab.

Password Administration

The option to change a password is accessed from Platform | User Management (by selecting a user

and editing the preferences).

Platform Administration Passwords, may contain, between 4-16 characters including the following: the

alphanumeric characters 'a' through 'z', 'A' through 'Z' and '0' through '9' and the special characters (-

) dash, (_) underscore and (.) period

System Passwords

There are three kinds of passwords:

1. The admin user for the Platform Administration account

2. The central registration password (you need this password to register a new node)

3. Each node's ini_modifier/Platform Administration password

Password Specifications

1. The admin user password and the ini modifier password can be changed from the same

location in: Dashboard |Preferences.

2. Unix/Linux/Mac users can change their Admin account and the Central registration password

by running the change_gui_password.sh script or change the Admin password only by

running the setup_tool.sh. Windows users can change the password with the Setup Tool Start

| Programs | Zend Platform | Setup Tool.

3. If you have a node/s on the central machine, then 2+3 (above) are the same.

4. If you install a node that is registered to a Central Server, then the change_gui_password.sh

script will not be installed and you will not be able to change the ini_modifier password for

the specific node. Moreover, it will be permanently set to be the same as the central

registration password at the time of the registration. Therefore, you will only be able to

change the Central's password which will be in turn automatically applied to the central's

registered nodes.

change_gui_password.sh can be used to change two types of passwords:

 change_gui_password.sh --ini -Changes the INI modifier password, which is the password

used to register nodes to the central. This password is also the required password that the

users need to make changes to the php.ini in the GUI.

 change_gui_password.sh --admin - Changes the administrator password, which is the

password used to login to the web interface.

Zend Platform

35

Cluster Management

Contents:

Server Management Restricting Access to Virtual Hosts

Group Management Change Server

VHost Management

Platform manages clusters to make them available and manageable from a single location - the

Central Server. Platform treats clusters as a single unit for monitoring and management purposes.

Moreover, through the Central Server each node in the cluster can be individually accessed.

(The Central Server aggregates events originating from different servers; however, they include an

identifier for each node on which the Event occurred).

The installation process (and later on the Setup Tool) is used for adding servers to the cluster to

become Nodes belonging to the Central Server. Once users add a server, the server's settings can be

applied and modified using the Central Server.

The following cluster setting options are available from: Platform | Cluster Management:

 Manage Servers - Configure, delete and define servers.

 Manage Groups - Group servers together for event reporting and configuration purposes.

 Manage VHost (Virtual Hosts) - Manually delete and define Virtual Hosts

Figure: Manage Clusters Dialog

Define Event Triggers once the servers have been configured and grouped.

Zend Platform User Guide

36

Server Management

The Manage Servers tab is accessed from Platform | Cluster Management by selecting Manage

Servers.

The Manage Servers tab provides options for configuring and defining settings for servers added to

Platform using the Setup Tool.

Only servers installed with the Zend Platform Setup Tool will appear in the Manage Server tab.

The options available from this tab are:

 Add Server

 Remove Server

 Change Server

Adding a Server

The following procedure describes how to add a server to Platform so that it appears in the Manage

Clusters screen.

To add a server:

1. Run the Setup Tool (Please see the Zend Platform Installation Guide for details on

Node installation).

2. Zend Platform automatically identifies registered servers and displays them in the

Manage Servers tab.

3. The installation script sets the Server Name and users can now define the new

server's settings.

Server settings are defined from Platform | Cluster Management | Manage Servers.

The Server management settings are as follows:

 Server Address - The actual hosts address (not editable).

 Server Name - The server’s name for identification and all references to the server from Zend

Platform.

 Group - Designate a server to an existing group (new groups are added to the list from the

Manage Groups tab).

 GUI Directory - States the location of the server’s Platform Administration Installation.

 SSL - Check the box if the server uses SSL.

 Port - Specifies the port with which the specific server works.

 Remove - Removes the server from the database (unregistered) and deletes all events

related to the removed server.

These settings should only be changed if changes that may affect these settings, occurred since the

node installation.

Zend Platform

37

Removing a Server

The following procedure describes how to remove a server.

To remove a server:

1. Go to: Platform | Cluster Management and select Manage Servers.

2. Select a server from the list and click "Remove".

3. Manage Servers will remove the server from Zend Platform and all functionality will

be disconnected.

Attempting to remove a server while another user is working on the server (through Platform), will

activate a prompt message asking the user to select another server. Active Pop-up Blockers may

interfere with this action causing a notification message to appear asking the user to actively select

the "Select Server" option. This message will only appear once furthermore, deactivate all Pop-up

Blockers when using Platform or activate the option to allow Pop-ups from Platform's URL.

Note:

To add a removed server, uset the Setup Tool to re-register:

In UNIX: ...<install dir>/bin/setup_tool.sh

In Windows: Start | Programs | Zend Platform | Setup Tool.

More information on the Setup tool can be found in the Zend Platform Installation Guide.

Changing a Server

The following procedure describes how to re-configure a server after changing the port Apache listens

on. Changing the port Apache listens on means that platform also has to be updated.

To update a server:

1. Go to: Platform | Cluster Management and select Manage Servers.

2. Locate the server in the list and manually change the port number click "Save" to

apply the changes.

3. Go to: Configuration | PHP Configuration and use the search toll to locate the

directive "zend_central.gui_address".

4. Change the port number in the address and click "Save" to apply the changes.

5. Restart Apache.

The server is now configured to listen to the new port.

Click here to see how to use user permissions to restrict access to Virtual Hosts.

Zend Platform User Guide

38

Group Management

The Manage Groups tab is accessed from Platform | Cluster Management by selecting Manage Groups.

The Group Management tab provides options grouping servers together for event reporting and

configuration purposes.

Groups are created to:

 Aggregate Events across nodes (only if the nodes are running the same Web application).

 Enable configurations to be automatically applied to other servers belonging to the same

group (using the Clone Configurations feature).

 Facilitate handling and managing groups of servers.

The following procedure describes how to create a new group.

Groups should only be aggregated when the PHP application on all servers in the group is identical.

To create a new group:

1. Go to Platform | Cluster Management and select "Manage Groups".

2. Give the Group a name and click "Add" to add the group.

A new group will be added to the list below.

3. If you want to aggregate all events that occur on the servers associated with the

specific group select the 'Aggregated' option.

Click here to see how to use user permissions to restrict access to Virtual Hosts.

Zend Platform

39

VHost Management

Manage VHosts tab is accessed from Platform | Cluster Management by selecting Manage VHosts.

The Manage VHosts tab provides a way to manually define Virtual Hosts.

In general, virtual hosts are automatically added based on Event activity. However, Virtual Hosts only

appear in the lists after an event is generated for a specific virtual host.

To ensure that all Virtual Hosts can be visible, an additional option has been added to manually add

Virtual Hosts. This option allows users to create the actual virtual host list for any given server.

Virtual hosts can be added or deleted from this tab.

Virtual hosts are added per server and deleted in one of two ways:

1. Per virtual host name - do not select a specific server name before adding or deleting the

virtual host.

2. Per virtual host for a specific server - select a specific server name before adding or

deleting the virtual host.

When deleting a virtual host the database will permanently delete all events related to the deleted

virtual host.

Click here to see how to use user permissions to restrict access to virtual hosts.

Restricting Access to Virtual Hosts

Defining Virtual Hosts provides a way to prevent certain users from gaining access to information

regarding certain Virtual Hosts. This procedure describes how to restrict user access using virtual

hosts. Restricting access to a Virtual Host by user name is an additional level of authorization that is

more precise than granting permissions per server.

To restrict user permissions by virtual host:

1. Go to Platform | User Management.

2. Select the User (who should be denied permissions) and click "Edit".

The Edit User Wizard opens (see Adding and Editing Users for complete instructions

on the Edit User Wizard).

3. In step two make sure the check box next to "No Server Restriction" is left

unchecked.

4. Select the check box next to the virtual hosts that should be granted access.

This will grant access to the selected virtual hosts only

5. Click "Finish" to close the Edit User Wizard and return to the User Management

Screen.

Zend Platform User Guide

40

Change Server

The Change Server button is accessed from the Main Info bar (located at the top of each tab) and is

available from features that can be applied to nodes belonging to the cluster.

Platform provides a single user interface for activities that are performed both on the Central (the

cluster governing component) and nodes (servers that have been assigned to the central). The

transparent user interface provides users with the ability to transition between servers.

Note:

The Change Server screen is a pop-up. If you have a Pop-up Blocker activated on your browser, make

sure that pop-ups are allowed for the Platform URL or deactivate the Pop-up Blocker entirely.

The user interface is divided into actions that are performed on the central server and actions that are

performed on a selected node.

The actions performed on the Central server are as follows:

 Platform (administration menu): Dashboard, Status, Preferences, User Management, Cluster

Management and license Management.

 PHP Intelligence: System Health, Graphs, Event List, Event Triggers Event Actions and

Security.

 Session Clustering: Statistics and Settings.

 Job Queues: Queues, Jobs and Settings.

 Integration: BIRT Reports (The Java Bridge must be up and running on the central server in

order to render the reports).

The actions performed on a selected node are as follows:

 Performance: Console, Settings, File View, URLs, Testing and Tuning.

 Configuration: Studio, PHP Configuration, PHP Info and Clone wizard.

 Integration: Java Bridge.

 ZDS: Settings

The Server Indicator displays the name of the server on which you are currently working, the user

name used to log-in, a log-out option and the current date and time.

When on a node, the Server Indicator will add an additional option to change the server. This option

will not appear on when performing actions on the central server.

The following procedure describes how to change the server on which you are working. The "Change

Server" option opens a tree that displays all the available servers that the currently logged-in user is

permitted to view. Servers can be displayed in the tree by Groups or alphabetically.

To change a server:

1. Click "Change Server".

2. Choose a Server from the list and click Select.

3. If you cannot see a specific server, it is possible that you do not have the correct

user permissions, in that case go to: Platform | User Management and check to see

Zend Platform

41

if your User has a "Server Restriction". Alternately, contact your System

administrator to grant access to this server through your Platform user permissions.

Platform will "remember" the last server selection for the next log-in.

Zend Platform User Guide

42

License Management

Contents:

Manage License Updating a License

Acquiring a License

About License Management

The License Management tab (Platform | License Management) allows you to manage licenses and

view their status. the License Management tab is a central management tab for all the nodes

governed by the Central Server.

There are four different types of licenses available for Platform:

 Production-Enterprise: The Enterprise Server includes the performance management features

along with Session Clustering, Job management and Integration tools for Multi-Cluster

enterprises.

 Production-Performance Management: The Performance Management Server includes the

Platform, PHP Intelligence, Performance and Configuration tabs. This version is suited for

production environments that can benefit from the information collected in events and the

performance optimization tools.

 Development-Enterprise: The Enterprise Server is a full featured development version. This

version includes features that can assist in the development lifecycle (PHP Intelligence and

Performance) and provide an environment suitable for developing multi-cluster enterprise

web applications (Session Clustering, integration with Studio, Actuate Reports etc.).This

license is suitable for development environments and licenses a single Central Server

(without additional nodes).

 Trial: A 30 day fully featured evaluation version of Platform. After the 30 days, only the

Server functionality for remote debugging and tunneling will continue to work without a

license.

Zend Platform

43

Manage License

The License Management tab is accessed from Platform | License Management.

The Manage License screen, displays a summary of all the licenses by type and if they are Active

(valid) or Expired. The summary includes details about the number of licenses by type and total

quantity of licenses. Licenses that have errors in them (for example: a corrupted license file) are

included in the Expired license summary.

Below the License Summary is a detailed table that displays the details of each license, per server.

The actions that can be performed through the table are: sort, acquire license and update information.

1. Sort: rearranges the licenses displayed in the table, by a selected column. To do so, click the

column heading and the contents of the table will be automatically sorted by server name,

type, status or expiration date.

2. Acquire License: This option is used to obtain and install license files. This option should be

used to activate new licenses for each server that appears in the list. Once the license has

expired use this option again to update the license.

3. Update Information: Updates information for a specific node to the Central Database.

To manage your licenses:

Go to Platform | License Management. The License Management screen will appear.

Figure: License Management Tab

This screen displays the names of all servers (servers that are currently available and servers that

were once connected), related statistics, license type and Platform license status.

From this screen you can:

 Update All Information: Located in the top right corner of the screen, this button reads the

license data from all the nodes and updates the Central Database. This action has to be done

after making changes to the node licenses. This button should be used when you need to

update all the nodes. If you need to update only a specific node, use the Update Information

option.

Zend Platform User Guide

44

 Update Information: Located in the license details table, this button reads the license data

from a selected node and updates the Central Database. This action has to be done after

making changes to the node's license. This button should be used when you need to update a

selected node. If you need to update all the nodes, use the Update all Information option.

 Acquire License: obtain and attach a license file to a specific server.

Zend Platform

45

Acquiring a License

The acquire license option is available from Platform | Manage License when clicking Acquire License

in the licenses.

The following procedure describes how to acquire a license.

To acquire a license:

1. Go to Platform | License Management.

2. Click on the "Acquire License" icon corresponding to the server that requires a

license.

The "Acquire License Wizard" will appear.

Figure: Acquire License

2. The Acquire License screen includes 5 steps, follow the instructions in steps 1-3 in

order to obtain, store and upload your license file.

3. Once the license file is put into place follow step 4 and restart the designated server

(if the license is for a node the designated node should be restarted.

4. After restarting the server use step 5 to update the server with the new license's

information.

The Server's status in the table should change to show the uploaded license type, if this does not

happen, open a ticket with support at: http://www.zend.com/en/support-center/.

http://www.zend.com/en/support-center/

Zend Platform User Guide

46

Updating a License

The option to update a license is available from Platform | Manage License. License settings should be

updated each time a license file is changed.

Before updating your license make sure the new license is placed in the correct location. The proper

location is defined by the directive "zend.license_path" the default setting is

/usr/local/Zend/Platform/etc/licenses (for i5 users the location is usr/local/Zend/)

The following procedure describes how to update a license.

Note:

The recommended action is to remove the old/trial license (delete) or change the file's extension

(backup) before placing the new license file in the same location.

To update a license:

1. Replace the license on the server (see above) and restart the Web Server.

2. Go to Platform | License Management.

3. Click on the "Update all Information" button located in the top right corner of the

screen.

The update process will begin.

2. Once the update process is completed, go to 'License Management' and verify that

the correct license data has been updated.

The new license has been successfully updated.

Zend Platform

47

PHP Intelligence
Contents:

Event Trigger Settings and Analysis Event List

Why Configure Event Triggers? Event Triggers

Finding Events that Interest You Security

The Problem Resolution Lifecycle Event Actions

System Health Event Details

Graphs

PHP Intelligence provides a means for monitoring activity on clusters and servers.

PHP Intelligence Includes:

 System Health - provides an up-to-date "snapshot" of events monitored by Platform

categorized by Host and Event Type.

 Graphs - display Event relates information in a graphical representation.

 Event List - a table of events that includes events that occurred during a user-defined time

frame. The information displayed in the Event List can be filtered by Events From, Event

Type, Virtual Host, Alert Severity, Status, and Time Filter. You can also find a specific Event

by ID.

 Event Triggers - define and/or change triggers for monitoring events on a specific node. From

this screen you can: configure Event Triggers, view Event Triggers currently defined for the

node, and filter the view of events displayed in the Define Event Triggers table.

 Security - control the information collected for events by eliminating potentially unsecured

data from event details.

 Event Actions - apply actions to triggered Events, send to URL or mail or SNMP trap.

 Event Details - view and diagnose event related information.

Zend Platform User Guide

48

Event Trigger Settings and Analysis

Initially Platform Event settings are based on predefined default parameters. As such these settings

require calibration to suit specific environments. The anticipated results are Event Details generated

based on default triggers. Running Platform for the first time will most probably cause abnormal event

generation behavior (too many or too little events).

This behavior is attributed to two causes:

1. The Default triggers need to be calibrated.

2. The PHP needs to undergo additional performance Optimization.

Before making any adjustments to the PHP code that may turn out to be unnecessary, first calibrate

PHP Intelligence.

Calibrating Event Triggers for Performance Optimization

Calibrating PHP Intelligence is the process of adjusting Event Triggers to accommodate a specific Web

application.

Event Triggers are calibrated from PHP Intelligence | Event Triggers.

Note:

Rules are configured on a selected server and can be subsequently applied to additional nodes with

the Clone Wizard. This option should be used in node cluster environments.

When calibrating Event Triggers for performance optimization, the following performance-related

event types should be addressed:

 Slow Script Execution (Absolute and Relative) - generates an event when script

execution exceeds defined limits

 Slow Query Execution - generates an event whenever database related functions exceed

the threshold defined in the event.

 Slow Function Execution - Generates an event when a specified PHP function’s execution

time exceeds the threshold defined in the event.

 Excess Memory Usage (Absolute and Relative) - Generates an event when memory use

for PHP script execution is above or below average.

These event types are performance related indicators. Each one of these events should be configured

to generate an Event according to your environments performance requirements. Events generated

following calibration indicate that certain areas of the application are not performing according to your

requirements and need further investigation.

Investigating Performance Related Events

Performance related events are investigated when events continue to occur after initial calibration.

The contents of Event Details provide in-depth diagnostic information and tools for investigating the

occurrence. A generated event does not necessarily indicate a problem with the PHP Code, it can also

indicate that the Event Trigger settings need to be adjusted or the PHP code should be reevaluated.

The most effective performance diagnostic tool is the Studio Profiler. The Studio Profiler is a Studio

component that can be employed on Event Detail information through Platform’s integration with

Studio.

Zend Platform

49

Profiling PHP Code with Studio

Running the Studio Profiler on PHP code provides time-related snapshot of the Code’s overall

performance. Profiling is a Studio component for analyzing PHP code. When profiling, the event’s

information is transferred from Platform to Studio. This information includes all the information

necessary to precisely recreate of the actual occurrence that generated the event. The Studio Profiler

is so accurate that this process is paramount to running the Profiler when the event originally

occurred. Profiler information is generated by, placing timers within the code and running them over

and over. The profiling tool is able to build a "profile" of how fast or slow specific areas of the

application will run.

The Profiler is activated through Event Details from the Zend Studio Diagnostics section by selecting

the option, Profile URL.

Figure: Event Details - Zend Studio Diagnostics, Profile URL

The Profiling process takes place in Studio and automatically opens the Profiler results.

Note:

Studio has to be installed and running to profile code. Also, the Server settings have to be configured

in Core or Platform to allow connectivity between Platform and Studio .

Understanding Profiler Results

Based on the information provided with the Profiler, developers can identify the cause for the

performance problem and implement changes to the code accordingly.

The Profiler user interface contains 3 tabs:

 Profiler Information - provides general information on the profiling duration and date,

number of files constructing the requested URL and more. In addition, it displays a Time

Division Pie Chart for the files in the URL.

 Function Statistics - provides you with the list of files constructing the URL and detailed

information on functions in the files.

 Call Trace - provides a hierarchical display of functions according to process order, enabling

you to jump to the function, view the function call, function declaration, details and more.

Note:

Additional information about the Studio Profiler can be found in the Zend Studio Online Help.

To perform in-depth examinations of slow code or functions the Studio Debugger can be used to

debug information in the occurrence’s relevant context.

The Debugger is also activated through Event Details from the Studio Diagnostics section by selecting

the option, Debug URL.

Figure: Event Details - Studio Diagnostics, Profile URL

Zend Platform User Guide

50

This completes the description of the investigation and diagnostics tools that can be used to identify

performance bottlenecks in the code. The next step is to see what performance tools can be applied to

optimize the Web application’s performance.

Why Configure Event Triggers?

Event Triggers are an essential tool for pinpointing bottlenecks in Web applications. Events not only

indicate that one of the thresholds was breached they also collect information relevant to the

occurrence to provide a full audit-trail for diagnostics.

In terms of the outcome, these thresholds can be directly translated into performance issues the end

user may encounter. Therefore, the more Events resolved the better the application will run.

By using Event Triggers, scripts can be monitored to identify with precision the number of milliseconds

or percentage it takes to execute a script. This identification is based on parameters that you can

determine as acceptable performance thresholds.

Finding Events that Interest You

Platform provides several ways for viewing Events that occur; each way has different advantages and

can be used to suit different requirements as follows:

 Platform | Dashboard | Events at a Glance displays the top five events that occurred, on

all the servers. Double clicking on an Event in the Console opens its Event Details screen.

 PHP Intelligence | System Health displays an up-to-date "snapshot" of events monitored

by Platform and listed by server and Event Type. Selecting a Location (Node) or a specific

Event Type automatically filters the view to display relevant Events in the Event List.

 PHP Intelligence | Event List is a filterable display for viewing events in a table according

to various parameters. Choosing "Change Table Fields" modifies these parameters. This

opens a selection list of all the possible field options. This window also includes an option to

locate events by their Event ID.

 Platform | Dashboard |Configuration and Management Tools | Event Actions for

sending events of a certain type to e-mail or URL according to predefined rules. This provides

a proactive means for sharing information either with parties that need to be informed when

certain events occur (e-mail) or for integrating event information to other applications (URL).

For example: a manager may only want to know about Severe PHP errors that indicate some

or all of the Web application is not working. Setting an Event Action to send event

information by e-mail means that this manager is immediately informed of the event, as long

as the e-mail account is accessible

Note:

Read more about how your organization can leverage information generated by events in the Tutorial

- Integrating Existing and Legacy Applications.

Zend Platform

51

The Problem Resolution Lifecycle

Developing and maintaining Web applications is an intricate and highly demanding process. Platform

facilitates the intricacies of the development process by employing an efficient problem resolution

infrastructure "The Problem Resolution Lifecycle". This infrastructure’s main goal is to help make the

most out of challenging environments and tight schedules and prevent problematic issues from falling

unnoticed.

With the Problem Resolution Lifecycle, organizations can improve communication between the

development, testing and IT teams to streamline the development and deployment processes.

Using PHP Intelligence in development and production environments unifies the working environment

and ensures improved information collection and distribution between development teams, testing

teams and IT teams (See illustration below).

Figure: Problem Resolution Lifecycle

Using Platform in your working environment ensures that pertinent and focused information reaches

the right person at the right time. The enhanced information exchange results in major improvements

in quality of code, time to production and overall performance and stability. The subsequent benefit is

more resources dedicated to activities focused on improving and expanding the current application

and less time spent on locating information necessary for recreating and resolving code and

performance issues

In the Problem Resolution Lifecycle, PHP Intelligence assists the efforts of the development, testing

and IT teams to quickly pinpoint, analyze, and resolve issues such as: PHP Slow Script Execution,

Function Errors, Database Errors etc.

Figure: Problem Resolution Workflow

Zend Platform User Guide

52

Zend Platform’s PHP Intelligence functionality is enhanced by:

 Implementing customized Event Rules to areas prone to problems in your unique

environment - facilitating focused and efficient problem resolution.

 Analyzing "Full Problem Context" grants a detailed insight of problematic occurrences.

 Integrating with Studio to resolve problems with state-of-the-art development and debugging

tools.

The Problem Resolution Lifecycle is based on a process of defining PHP Intelligence Event Triggers

according to acceptable run-time, performance parameters. PHP Intelligence enforces Event Triggers

and issues Event information in an Event Details screen according to the Event Trigger definitions.

When an Event occurs, PHP Intelligence compiles a complete profile of the Event’s occurrence and its

precise details. An Event Details screen includes comprehensive details in order to enable developers

and testers to recreate the Event in a way that mirrors the conditions of the original occurrence. This

information can then be used to diagnose problems by fine-tuning Event Triggers to accommodate

normal occurrences or resolve actual run-time problems and errors.

With Studio Diagnostics, problems and errors can be easily diagnosed using the Event Details screen

functions, Test URL and Profile URL, and further information can be analyzed using Debug URL and

Show Source Code. In addition, problems in code can be immediately resolved using the Studio Editor

which allows changes to be immediately made and deployed, not only to a single server but also to all

nodes belonging to the same Group.

Events can be preserved to leave an indicator of these occurrences if necessary. Furthermore, user

permissions can define who is permitted to perform actions inside an Event Details screen; enforcing a

structure that encourages communication between the different teams.

Zend Platform

53

System Health

The System Health tab is accessed from PHP Intelligence | System Health.

The most comprehensive way to view and manage events is through the System Health screen. The

System Health sub-screen provides an up-to-date "snapshot" of events monitored by Platform. Events

are displayed in a filterable table, which is updated by manually refreshing the browser (Clicking

) or by setting automatic refresh rate in Platform | Preferences, Auto refresh the System

Health). The System Health table includes events categorized by location (server/group) and event

type.

Figure: System Health Screen

To view the System Health table:

1. Go to PHP Intelligence | System Health.

2. Select the "Filter By" option to filter events displayed in the table.

Filter options are described in detail below.

3. Click "Go" to display the System Health table.

The fields that make up the Event Summary table are as follows:

 Location - Where the event occurred.

 PHP - Current PHP events for the selected Host.

 Server - Overall events related to general server performance.

 Database - Events related to database query handling.

 End User - The output size; field includes status information about output size.

Filtering Table Data

Zend Platform allows you to filter the event information displayed in the System Health table.

There are four group options:

1. All - Displays System Health information for all servers (and groups).

2. Ungrouped - Displays System Health information for servers that do not belong to a specific

group.

3. Server by name - Displays System Health information for the selected server group only.

Zend Platform User Guide

54

4. Aggregate servers - Aggregates the servers belonging to the same group into one row.

To filter the data displayed in the System Health table:

1. Select Filter By to expand the filter options and select the group name by which to

filter.

2. Click "Go" to display the filtered results in the System Health table.

Aggregation Groups

Event aggregation / reporting is the process of identifying events that were generated for the same

reason and can be reported as one event that occurred X times rather that reporting multiple

occurrences of the same event.

There are two options for aggregating events:

1. By Server

2. By Group

Aggregation by group happens when several servers are placed in a group that is defined as

"Aggregated” (Platform | Cluster Management | Manage Groups).

At the bottom of the System Health table there is a message stating that:

(*) Events that took place on the server before the server was a member of an aggregated group.

Aggregation by server happens when identical events are generated on different servers. The same

event is reported (for each server) separately. This is the default.

Event information can only be aggregated at the time of the occurrence and for information integrity

purposes will not be retroactively aggregated. Therefore, events that occur on individual servers (un-

grouped) before they were grouped will be reported as un-aggregated events.

Zend Platform

55

Graphs

The Graphs tab is accessed from PHP Intelligence | Graphs.

Platform includes an option to display event related information in a graphical representation (Pie and

Bar graphs).

Graph Behavior

The Platform graphs display general statistics about event segmentation. All graphs display tool-tips

with a description of the results displayed in the graph.

Graphs are viewed from two different locations:

1. Platform | Dashboard (only Pie Charts)

2. PHP Intelligence | Graphs

The following lists the available list of graphs, their display type and other additional information:

 Top 5 Events by Aggregation Hints - Pie Chart

 Top 5 Events by Event Type - Pie Chart, Drill down to view a list of events relevant to the

selected part of the chart

 Top 5 Events by Location - Pie Chart, Drill down to view a list of events relevant to the

selected part of the chart.

An asterisk (*) next to the name of a server indicates that the statistics contain numbers

about events that took place on the server before the server was a member of an aggregated

group.

 Top 5 Events by Script - Pie Chart

 *Total Events by Hour - Bar Graph

 *Total Events by Month - Bar Graph

 *Total Events by Weekday - Bar Graph

* These graphs can only viewed from PHP Intelligence | Graphs

Figure: Bar Graph and Pie Chart

Zend Platform User Guide

56

Generating Graphs

This procedure describes how to generate graphs. Regular pie charts do not require any additional

actions in order to generate a graph. However, bar charts display information based on a specific

parameter therefore, a parameter has to be selected and defined in order to generate a Bar Chart

representation.

To generate a Bar Chart:

1. Go to PHP Intelligence | Graphs.

The Graphs screen opens.

2. Select one of the bar chart options: Total Events by Hour, Total Events by Month,

and Total Events by Weekday.

The display changes to add input fields to select the range for the Graphs.

3. Define the range and click "Generate Graph".

The graph will be generated and displayed on screen.

Zend Platform

57

Event List

Contents:

Database Maintenance

Change Virtual Host

The Event List tab is accessed from PHP Intelligence | Event List.

The Event List is a filterable table that displays Events that occurred within a user definable period of

time.

Information displayed in the Event List can be displayed as follows:

 Events can be filtered by the following categories: Events From, Event Type, Virtual Host,

(Event) Severity, Status, Time Filter and URL.

 Events can be located in this screen by the event’s ID.

 Columns in the Event List table can also be customized (Use Change Table Fields).

Specialized filters can be created and saved using the Manage Filters option.

Filtering by Virtual Host

Several servers can be added to a user-defined group and used to filter the display to show Events

that occurred on a specific selection of servers.

To define a virtual Host name that will be added to the list in the filter, go to the Virtual Host filter

field and choose "Selected". This option opens the Change Virtual Host screen.

The Manage Filters section allows users to save user defined filter definitions.

To save user defined filter definitions:

1. Define the filter settings in the Filter By section.

2. Select Manage Filters to expand the filter management options.

3. Enter a user defined name for the filter and press Save to add the new filter.

4. Use Load Filter each time you want to use a user defined filter.

5. Use Remove Filter to delete filters from the Load Filter List.

The filter section of this screen also includes a search field for searching for a specific Event by ID.

Zend Platform also allows you to change the table fields displayed on-screen. (Click "Change Table

Fields "and select the fields you want to view from the list).

Working with the Event List

This procedure describes how to work with the event List.

To view the Event List:

1. Go to PHP Intelligence | Event List.

2. Select the "Filter By" option you wish to apply to the table.

Filter operations appear as follows:

• Events from - Filter Events according to grouping definitions. These definitions list

events according to where they were generated (in the PHP, Database) or what type

Zend Platform User Guide

58

of event (slow response, error). The values are: All, Bandwidth-Other, Web server-

Other, PHP-Slow Response, PHP-Error, PHP-Other, Database-Slow Response,

Database-Error

• Event Types - Filter Events displayed in the table according to event type. The

values are: All, Slow Script Execution (absolute/relative), PHP Error, Java exception,

Function Error, Slow Function Execution, slow Content Download, Maximum Apache

Processes, Excess Memory Usage (absolute/relative), Database Error, Slow Query

Execution, Inconsistent Output Size, Load Average, Custom Events, HTTP Error.

• Virtual Hosts - View Event information for either All hosts or selected hosts. Click

Selected to open the Change Virtual Host Selection dialog box. All, Selected or

predefined user selections.

• Severity - Filters Event information according to severity. The values are: All,

Moderate, Severe

• Status - Filters information displayed in the Event List according to the Event’s

handling status. The values are: All, Opened, Closed, Ignored

• Time Filter - Filters information displayed in the Event List according to a user-

defined time frame. The values are: All, Past Hour, Past Day, Past Week, Past Month

• Find Event by ID - Finds (and displays) an event with a specific ID number. (By

entering an event id and clicking "Find"). The values are: Sequential numbers that

were assigned to Event Details.

• Filter by URL - This is a free text field for filtering events generated from a specific

URL.

3. Click Go to display filtered events in the Event List table.

Figure: Event List

Zend Platform

59

The Following list describes the fields that make up the Event List.

 ID - Sequential number assigned to an event.

 Event Type - A descriptive name assigned to the event.

 Count - Number of occurrences of the event.

 First Occurrence - Date and time of event’s original occurrence.

 Last Occurrence - Date and time of event’s most recent occurrence.

 Location - The name of the server or Aggregated Group where the event occurred.

 Vhost - Name of the Vhost where the event occurred.

 URL - The URL where the event occurred.

 Source File - Path to PHP source file.

 Line - Line in code where event occurred.

 Aggregation Hint - The hint in the code that caused the event to be aggregated.

 Function Name - Name of PHP function where event occurred.

 Status - Status of the event.

 Severity - Severity of the event.

Actions that can be performed on the events in the Events Table:

To apply one of these actions to an event/events select the event by checking the check-box next to

the events:

 Delete - Deletes the Events form the database.

 Ignore - A new Event Details screen will not be created for this specific - occurrence

Additional occurrences of this event will be added to the original Event's details.

 Close - Changes the status of the event to "Closed" and preserves the Event in the Database.

If the same event occurs again a new Event Details screen will be created.

 Preserve - Preserve the selected event from being deleted during Database cleanups.

 Reopen - Changes the status of ignored or closed events to "Open". This option is available

from the Event details i.e. double-click on an Event in the list to view the details and clicking

Reopen from the Buttons located at the bottom of the Event Details.

Note:

The default value for database cleanup is 7 days.

Depending on the operating system database cleanup settings can be changed in:

for unix/linux/mac the file location is:<install_dir>/etc/php-embed.ini and for windows is:

<install_dir>\etc\php-embed.ini

Zend Platform User Guide

60

Database Maintenance

Once the cause of the event has been fixed, we can decide what to do with the event: Preserve,

Ignore or Delete. If no actions are done to an event, it will be automatically deleted from the

database.

Apart from closing events, other additional advantages can be obtained by customizing user

permissions. Granting different users separate authorizations, by configuring different user

permissions can facilitate different organizational requirements such as enforcing responsibilities and

work structures. For example: by providing 'Read Only" authorization to people who only need to see

event details and granting authorization to Close events only to those who should close events (such

as managers or team leaders) we can create and maintain a structured working environment.

The Event List provides four options for handling events in the system:

 Close Event - Closes the event (i.e., changes the event status to closed). Therefore, if this

event occurs again, Platform will open a new event.

 Ignore Event - Ignores future instances of this event (i.e., changes the event status to

ignore). Therefore, if the same event occurs again, Platform will not open a new event.

 Delete Event - Deletes the event (i.e., removes the event entirely from the database.)

 Manual Override - Users can also manually change the status of an event by clicking on the

event in the Event List and changing its status. This method is helpful, for example, if you

want to "un-ignore" an ignored event and restore it to the main screen.

Zend Platform

61

Change Virtual Host

To access this option go to PHP Intelligence | Event List, this option is activated when using the filter

and selecting to filter by "Virtual Host".

This procedure describes how to change a Virtual Host. Use this option to add several servers to a

user defined group and help filter the Event List to show Events and Alerts that occurred on a specific

selection of servers.

To create a virtual Host:

1. Choose the servers from the tree.

2. Name the current selection.

3. Click "Save".

To view a Virtual Host’s settings:

1. Select a Virtual Host from the Load Selection field.

2. Click "Load".

Virtual Hosts can be deleted by clicking "Remove Selection".

Zend Platform User Guide

62

Event Triggers

Creating Events

Contents:

Filtering Event Triggers

Choosing and Defining Event Triggers

The Event Triggers tab is accessed from PHP Intelligence | Event Triggers.

Event generation is an out-of-the-box feature. Directly after installation, Platform’s PHP Intelligence

will begin to monitor events according to Default Settings. To further enhance the effectiveness of PHP

Intelligence, events thresholds can be customized. In a similar manner thresholds can be gradually

modified to not only reflect improvements in performance but also to verify that problematic issues

have been resolved.

Configuring Events

Events can be configured according to each environment’s specific requirements. The main

configuration changes that should be done are to do with tuning Event Trigger values and defining a

list of Functions and PHP errors to be monitored.

To Configure Event Triggers:

Go to PHP Intelligence | Event Triggers and change the default settings according to your

requirements.

A help button appears next to each Event Type. Pressing this button will display a

description of the selected Event and the Event’s parameters (alternately go to Choosing and

Defining Event Triggers).

Disabling Events (Triggers)

In some cases there may be Events that are either not applicable to your system or unnecessary.

Events are disabled from the PHP Intelligence module. When an event is disabled the event will not be

monitored and no event information will be stored.

To disable Event Triggers:

1. Go to PHP Intelligence | Event Triggers and select "Configure Event Triggers".

2. In the Define Event Triggers Table, the Check box in the Active Column indicates if

an Event Type is monitored or not.

To prevent a selected Event from being monitored, disable the Rule by de-selecting the Check Box.

This will deactivate and stop collecting event related information.

List Entry of Watched Functions

Platform allows you to monitor a list of functions by referencing a text file that includes the functions

you wish to monitor. Users who must monitor large numbers of functions will find this method of

defining watched functions a convenient alternative to editing the 'php.ini' file line by line.

Use the following PHP functions to reference a text file containing the list of functions to monitor.

The following function is typically used to create a list of functions to watch. It forms part of the

'php.ini' file.

Zend Platform

63

zend_monitor.watch_functions=mysql_connect,mysql_query

The following function refers zend_monitor.watch_functions to a text file at a specific location. This file

contains the list of functions to monitor.

Note:

Functions returning 'null' as an expected result, should not be included in this list.

UNIX, Linux, i5/OS and Mac:

'zend_monitor.watch_functions=@<installation_dir>/lib/watch_funcs.txt'

'zend_monitor.watch_results=@/<installation_dir>/lib/watch_res.txt'

Windows:

'zend_monitor.watch_functions="@<installation_dir>\lib\watch_funcs.txt"'

'zend_monitor.watch_results="@<installation_dir>\lib\watch_res.txt"'

(In Windows the quotes must be present)

The text file should contain one function name per line.

Example:

mysql_connect

mysql_pconnect

mysql_query

mysql_db_query

mysql_unbuffered_query

User functions can also be included in the Watch Functions file. Each user function must be added with

its Class (class::function).

If necessary, inheritances should also be included in the file as only functions explicitly specified in the

Watched Functions file are watched.

Zend Platform User Guide

64

Filtering Event Triggers

The Filter Events option is accessed from PHP Intelligence | Event Triggers.

The following procedure describes how to filter event triggers. Platform is equipped with Events for

monitoring performance and script execution. The default Event Trigger display is a non-filtered view

that shows all the available Alerts. A filter is provided to allow displaying a selection of events by type.

To filter events:

1. Click "Filter By" to expand the filter list.

2. Use the two drop-down fields to select the Events to display by:

• Events from - The area where the event originated (script, database, web

server, etc.)

• Event Types - Filter view to display Events according to their Event Type (The

selection changes according to the area chosen in the "Events From" field).

3. Click "Go" to filter the view.

A list of events matching the search criteria will be displayed.

Zend Platform

65

Event Types

Choosing and Defining Events

The Event Triggers feature is accessed from PHP Intelligence | Event Triggers.

The fields that make up the "Configure Event Triggers" table are:

 Event Type - The type of event under the rules defined, will produce an alert in the

monitoring system.

 Active - When enabled for a specific event, Zend Monitor (node) will report alerts when they

occur (This gives the user the right to disable an event for a particular server).

 Rules - Defines the conditions under which an event will produce a report. For example,

(Red) Script Runtime Exceeds 500 Seconds means that the system will generate a critical

(red) event-for Slow Script Execution (Absolute) type events, when meeting the condition (>

500 sec.).

Note:

Define thresholds for both moderate and severe events although, some events have only one level of

severity (like function error).

 To define whether Zend Monitor will report a specific event, enable/disable the event in the

Active column of the Define Event Triggers table.

 To save the changes to Event Trigger definitions, click Save Rules.

The database will update with the changes.

Each event type has its own advantages and characteristics.

Note:

Events marked as "Performance Monitoring Events" have a special role in optimizing web application

performance. See "Implementing the Performance Lifecycle".

Each Event Type has its own advantages and characteristics. Listed below are the different Event

Types, their descriptions and recommended usage.

The following is a list of event types, click on the event name for more information about a specific

event:

 Slow Script Execution (Absolute and Relative) - Generates an event when executing a script

exceeds defined limits or is lower or higher than the average script execution time.

 PHP Error - PHP Errors are used to identify all types of PHP errors. This type of event is useful

in QA processes to identify problems that may have slipped through the cracks during

production.

 Java Exception - Java exception events increase the visibility of issues originating from the

Java Side by indicating when uncaught Java exceptions occur in Java Code invoked from PHP

using the Java Bridge.

 Function Error - Generate a severe event when an error in one of the specified PHP Functions

occurs

 Slow Function Execution - Identify bottlenecks within functions.

Zend Platform User Guide

66

 Slow Content Download - Slow Content Download Events identify slow downloads that are

related to download performance that can directly influence Web server performance and

download times.

 Maximum Apache Processes Exceeded - Maximum Apache Processes Events detect Apache

Process activity that can directly influence Web Server Performance and indicate activity

peaks.

 Excess Memory Usage (Absolute and Relative) - Identify when scripts are using excess

memory that can hinder the application's ability to perform.

 Database Error - Report database-related function fails.

 Slow Query Execution - Identify database performance slow queries that can directly

influence Web server performance.

 Inconsistent Output Size - Verify the script is sending the same size of output each time,

taking into consideration a margin as defined in the event's settings.

 Load Average - Monitor the overall health of processes running on the server.

 Custom Events - Generate an event whenever the API function monitor_custom_event() is

called from a PHP script.

 HTTP Error - HTTP Error events detect broken links and other application-level malfunctions

by indicating when HTTP errors occur when trying to access a Web page.

Zend Platform

67

Slow Script Execution (Absolute and Relative)

This is a performance-monitoring event.

Absolute Slow Script Execution is used to generate an event when executing a script exceeds defined

limits. This function is used to maintain performance standards.

Default parameters are 500 msec for moderate, 2000 msec for severe alerts.

Relative Slow Script Execution generates an event when script execution is lower or higher than the

average script execution time. Parameters should be set to a certain percentage for moderate and

severe alerts. The default values for this event type are set to 0. To generate events, configure these

settings to a value that suits required script run-time.

Additional Rules:

 Suppress in case a "Slow Function Execution" event occurs. Selecting this option ignores

"Slow Script Execution" events caused by a slow function. This is to prevent double reporting,

as PHP Intelligence will report these events as "Slow Function Execution" events.

 Suppress in case the load average is above X - Selecting this option ignores events that occur

when the average number of active processes waiting for CPU time is above x active

processes (3 active processes is the default value).

Note:

These additional rules are applied to the Absolute and Relative Slow Script Execution event types.

Relative Events:

Event definitions are based on relative values i.e. percentage. Relative values are set according to

warm-up settings, default value of 500 requests. If necessary, modify the default value by

changing the zend_monitor.warmup_requests directive in the 'zend.ini'.

The warm up period is per "top script" and there is a warm up for each script after every Apache

restart.

Zend Platform User Guide

68

PHP Error

PHP Errors identify all types of PHP errors such as:

 Hard errors that cause stops in page execution.

 Warnings that interrupt the end user experience.

 Notices that could lead to larger problems.

This type of event is useful in QA processes to identify problems that may have slipped through the

cracks during production. Production environments can benefit from using this PHP Intelligence

feature to alert administrators about runtime errors in their application that could seriously impact the

end user's experience.

Description:

Used to generate severe or moderate events on selected PHP errors, when they occur, and identify

real-time failures for given users.

To select a PHP Error Level, scroll through the selection and use CTRL for multiple selections. The

trigger type list is the same; therefore severe event selection takes priority over moderate event

selection.

Additional Rules:

Event reporting for PHP errors can be changed by setting error reporting to 0 or using the silence

operator @.

There are three options for activating Additional Rules:

1. Always Report Errors - Ignore the error-reporting setting and the silence operator and report

all PHP errors.

2. Report errors that match the error-reporting criteria - Ignore all PHP errors silenced using

either the error-reporting setting or the silence operator.

3. Report any errors not silenced with the operator @ - Ignore the error-reporting setting and

only ignore errors silenced with the silence operator.

Zend Platform

69

Java Exception

Java exception events increase the visibility of issues originating from the Java Side by indicating

when uncaught Java exceptions occur in Java Code invoked from PHP using the Java Bridge.

This Event identifies uncaught Java Exceptions and provides Java related backtrace information of the

occurrence as including information regarding the location in the PHP code that triggered the error.

Description:

Generates an event each time a Java Bridge related Java Exception occurs.

Note:

Caught Java exceptions are considered part of normal exception flows therefore only un-caught

exceptions are reported.

Zend Platform User Guide

70

Function Error

Functions return Function Errors and therefore offer specific information about the root of the error

that does not always arise from PHP errors.

QA and Production use this Event for identifying run-time events, as opposed to PHP errors that

identify code-related/syntactical events.

Function Errors can prove to be invaluable to an organization as they provide a different perspective

on problems (view the outside problems through the eyes of PHP). Despite the fact that the code may

be running okay, this Event indicates what other outside problems (i.e. network, database, web

services, file system etc.) you may have, based on the PHP function’s behavior. Issues like these used

to be difficult to reproduce however with the complete audit trail and full problem context, Function

Errors can be easily reproduced to a level of accuracy that mirrors the actual time of occurrence.

Description:

Generate a severe event when an error in one of the specified PHP Functions (built-in or user-defined)

fails (returns a FALSE value).

To add a function, enter the name into the + field and press Add (+).

There are three ways to monitor PHP functions:

1. Specify the function name, object methods can also be used (for example, bar::foo).

2. Use wild cards (*) to specify a range of function names for example myFunc_* will select all

functions beginning with myFunc_.

3. Specify the full path to a file containing a list of functions, each in a new line.

Note:

Database related functions are directed and reported as Database Errors (see the "Database Error"

event type).

Watched Functions File Event Types

The Watched Functions file can add Function Error and Slow Function Execution event types (PHP

Intelligence | Event Triggers) by entering a function in the field and pressing Add or specifying the full

path to a file containing a list of functions.

When users apply the Watched Functions file to the "Function Error" Event Type, the functions

included in the file will be monitored and an Event Details screen will be generated.

Zend Platform

71

Slow Function Execution

This is a performance-monitoring event.

Slow Function Execution identifies bottlenecks within functions providing a more granular approach

than finding bottlenecks in pages.

This type of event is useful in the production process for pinpointing performance bottlenecks by

watching functions that the user specifies.

Slow Function Execution events provide a different perspective on problems (view outside problems

through the eyes of PHP). Despite the fact that the code may be running okay, this Event indicates

what other outside problems (i.e. network, database, web services, file system etc.) you may have,

based on the PHP function’s behavior. This Event is also useful for catching pure PHP functions that

are performing slowly.

Description: Generates an event when function execution exceeds the setting defined in the rule. The

default values are, 500 msec for moderate, 1000 msec for severe alerts. This applies to the functions

selected in the additional rules section.

Additional Rules:

Generate events for specified PHP functions (built-in or user-defined).

There are three ways monitor functions:

1. Specify the function name. Object methods can also be used (for example, bar::foo).

2. Use wild cards (*) to specify a range of function names for example mysql_* will select all

functions beginning with mysql_.

3. Specify the full path to a file containing a list of functions, each in a new line.

Note:

Database related functions reported as Slow Query Execution events (see the "Slow Query Execution"

event type).

When applying a Watched Functions file to "Slow Function Execution" events, the functions included in

the file are monitored and Event Reports are generated when the function execution exceeds the

values defined to trigger a moderate or severe event.

Zend Platform User Guide

72

Slow Content Download

This is a performance-monitoring event.

Slow Content Download Events identify slow downloads that are related to download performance that

can directly influence Web server performance and download times.

Slow Content Downloads, if not pinpointed, can bring the server down by causing excess download

activity causing slower response times.

Slow Content Download Events provide a different perspective on problems (view outside problems

through the eyes of PHP). Despite the fact that the code may be running okay, this Event indicates

what other outside problems (i.e. network, database, web services, file system etc.) you may have,

based on the content download’s behavior.

Description:

Generates "Slow Content Download" events whenever an invocation of the API function fpassthru()

 rises above the given threshold. The default values are, 5000 msec for moderate, 10000 msec for

severe alerts.

The Zend Download Server (ZDS) is the optimal solution for handling large downloads. Use the ZDS

API to optimize download performance and reduce download traffic from your Web application.

Zend Platform

73

Maximum Apache Processes Exceeded

Maximum Apache Processes Events detect Apache Process activity that can directly influence Web

Server Performance and indicate activity peaks.

Max Apache Processes can assist in identifying peak activity.

Description:

Generates an event whenever the Apache process count rises above the given threshold.

The default values for triggering an event are 200 processes for a moderate Event and 250 processes

for a Severe Event.

Zend Platform User Guide

74

Excess Memory Usage (Absolute and Relative)

This is a performance-monitoring event.

(Absolute - a customer configured hard number; Relative - a customer configured percentage)

Excess Memory Usage events identify when scripts are using excess memory that can hinder the

application's ability to perform.

Production environments mainly use this event type but QA can also benefit from monitoring by KB or

percentage of memory used by a script to execute.

Description:

 Excess Memory Usage (Absolute) - Generates an event when memory for PHP script

execution uses more than a set amount of KB for moderate events and severe events.

 Excess Memory Usage (Relative) - Generates an event when memory use for PHP script

execution is above or below average, a set percent for moderate and severe events.

Note:

Both Event Types are only active if the PHP is compiled with memory limit. (Compile the PHP, with the

configure switch "--enable-memory-limit".

The default values for both of these event types are set to 0. To generate events, configure these

settings to a value that suits required memory usage.

Relative Events:

Event definitions are based on relative values i.e. percentage. Relative values are set according to

warm-up settings, default value of 500 requests. If necessary, modify the default value by

changing the zend_monitor.warmup_requests directive in the 'zend.ini'.

The warm up period is per "top script" and there is a warm up for each script after every Apache

restart.

Zend Platform

75

Database Error

Database Error Events report function errors such as:

 Connection errors

 Database selection errors

 General database function errors

These events do not require any additional configurations to the database. Production environments

can use the information to delineate between a PHP problem and a database problem.

Database Errors can prove to be invaluable to an organization as they provide insight into the

Database reliability along with a different perspective on problems (view outside problems through the

eyes of PHP). Issues like these used to be difficult to reproduce however with the complete audit trail

and full problem context, Database Errors can be easily reproduced to a level of accuracy that mirrors

the actual time of occurrence.

Description:

Database errors generate events when database-related functions fail. This event is directly

associated to the "Function Error" event and is activated and defined in correlation with this event

type.

Database functions that should be reported are defined (or deleted) from the "Function Error"

functions list.

Note:

To view supported databases, see the database related function prefixes listed in 'linux/unix/mac/

i5OS' <install_dir>/lib/db_functions.txt or in windows <install_dir>\lib\db_functions.txt.

Zend Platform User Guide

76

Slow Query Execution

Slow Query Execution events identify slow queries that are related to database performance that can

directly influence Web server performance.

Slow queries, if not pinpointed, can bring the server down by:

 Causing excess web server processes (Apache).

 Hang up queries in the database causing slower responses in the database.

These events do not require any additional configurations to the database. Production environments

can use this information to pinpoint performance bottlenecks in the database.

Description:

Generates an event whenever database related function execution rises above the given threshold.

This event is directly associated to the "Slow Function Execution" event and is activated and defined in

correlation with this event type.

Database functions that should be reported are defined in the "Slow Function Execution" function list

(in additional rules).

Note:

To view supported databases, see the database related function prefixes listed in

linux/unix/mac/i5OS <install_dir>/lib/db_functions.txt or in Windows

<install_dir>\lib\db_functions.txt.

Zend Platform

77

Inconsistent Output Size

Inconsistent Output Size events verify that pages render the same output to the client each time. If

pages do not render the same each time, some clients are seeing different output than others and an

error has occurred.

Production environments use this event as an indicator for possible usability issues.

Description:

Inconsistent Output events generate an event whenever the output size is below or above the

normally produced average output. The default values for this event type are set to 0. To generate

events, configure these settings to a value that suits acceptable variance in percents from output to

output of scripts.

Relative Events:

Event definitions are based on relative values i.e. percentage. Relative values are set according to

warm-up settings, default value of 500 requests. If necessary, modify the default value by

changing the zend_monitor.warmup_requests directive in the 'zend.ini'.

The warm up period is per "top script" and there is a warm up for each script after every Apache

restart.

Zend Platform User Guide

78

Load Average

Load Average events monitor the overall health of processes running on the server.

This event is used in production to highlight critical situations that might require analysis during high

traffic situations.

Description:

In Unix, Mac, i5/OS and Linux this event is triggered when the number of active processes waiting

for CPU time, is higher than the number defined in the rule. The default definitions for are set to 0 for

moderate and 0 for severe events.

In Windows this event is triggered when the CPU exceeds a certain load percentage threshold. The

default definitions for Windows are 90% for moderate and 95% for severe.

To start generating events set a logical value based on the server’s capabilities.

Zend Platform

79

Custom Events

Custom events are a unique type of event to initiate events from scripts.

This type of event is different from other event types because it controls event generation as opposed

to other events that trigger events by a certain occurrence.

Custom events are used to generate an event whenever the API function monitor_custom_event() is

called from the PHP script.

Description:

This event type enables the generation of an event on occurrences that are not necessarily built-in

events (error and performance issues). Custom events are used whenever you decide that it is

significant to generate an event in a certain situation. Each event type is given a name for easy

identification ($class).

Function Usage:

monitor_custom_event(string $class, string $text[, integer $severe, mixed $user_data])

Parameters:

 $class - helps to define several types of custom events. This description will be showed in

the Event List and in the Event Details.

 $text - error text used to describe the reason for the event. This text will appear in the

Event Details.

 $severe - (Optional) the severity level of the triggered event, where default the value is

Severe.

 $user_data - adds a PHP variable that will be viewed in the Event Details (in Event Context-

> Variables->User Defined). This forms the stored event data (similar to the information

obtained in a PHP error event).

Aggregation takes place for these events when two events occur in the same place and have the same

$class $text $sever(ity)

Note:

Action Rules defined for these events should be set to "send to URL" rather than "sending by e-mail"

as there is only one definition for these events and event reports sent to a URL can be easily

forwarded elsewhere. This is to prevent the overloading of e-mail. If we use the e-mail action, for

every custom event, e-mail will be sent, and there can be many classes of custom events. However, if

the URL action is used, a script can be used to identify the event’s class and different behaviors can be

implemented according to class.

Zend Platform User Guide

80

HTTP Error

HTTP Error events detect broken links and other application-level malfunctions by indicating when

HTTP errors occur when trying to access a Web page.

Using HTTP errors assists in identifying problems in calling a Web page.

Note:

Multiple errors generated from the same URL are aggregated into a single event. The Event Details

report will display the amount of times the Event occurred.

Description:

Generates an Event whenever a standard HTTP client or server triggers an error code (e.g. 404 Not

Found Error, 406 Not acceptable, 403 Forbidden, Custom Error Handler Page, etc.) including

Customized Error Handler pages.

Setting up HTTP Error Events

In order to generate HTTP Errors the function monitor_httperror_event() should be added to the Error

Handlers that need to be monitored. In order for PHP Intelligence to pick-up on errors such as "404

Not Found Error" "406 Not acceptable" and "403 Forbidden" your error messages must be configured

to reach a certain PHP page that contains the function, monitor_httperror_event(). This function

triggers an HTTP Error event when it is called from a PHP script.

This following example demonstrates how to generate an event for a 404 error message on Apache 2.

The actual definitions should be done in http.conf or htaccess.

ErrorDocument 500 http://example.com/

ErrorDocument 404 /raise_event.php

The example above runs the file called raise_exent.php whenever a 404

error occurs. The PHP file calls the function monitor_httperror_event() to

raise the event as follows:

<?php

monitor_httperror_event(404, 'error message');

?>

Zend Platform

81

Contents:

Creating Events

Filtering Event Triggers

Event Types

Platform comes ready with default configurations. However, a person with an understanding of the

environment’s settings and performance standards should construct the Event Triggers to suit each

unique environment. Event Triggers define the conditions under which events are captured by the

monitoring system (PHP Intelligence).

To Configure Event Triggers, go to PHP Intelligence | Event Triggers or use the Shortcut from Platform

| Dashboard.

Note:

If the Events Triggers tab is not populated, this may mean that the service was not available. Please

refer to Services and Extensions to verify the appropriate services are running.

Users are prompted to select a node before entering the Event configuration screen as all

configurations are made to a selected node. The top bars of screens display the name of the node, no

name means the user is working directly on the Central Server.

For example, the image below displays the following text: Server name "karnaf-deb". This means that

the user is no longer working on the Central Server but working directly on the node (in our case a

node aliased karnaf-deb).

Figure: Configure Event Triggers (Partial List)

The Event Triggers screen is used for defining and modifying Event Triggers to monitor events on a

specific node. The table is used to define the conditions under which an event will be captured by the

monitoring system.

Zend Platform User Guide

82

The possible actions on this screen are:

 Configure Event Triggers for a specific server.

 View Event Triggers currently defined for the node.

 Filter the view of events displayed in the "Define Event Triggers" table.

 Clone Events

To configure Event Triggers:

1. Open the PHP Intelligence tab, you will be prompted to select a server (if you have

not already selected one) and click, Event Triggers.

2. Activate events by marking the check-box next to the event.

3. Modify the default settings in the Rules column to customize the event behavior and

severity.

4. Click "Save Rules" to save changes.

5. Click "Clone Event Triggers" (at the top of the screen) to apply these settings to a

different server.

The settings will be applied and saved to the selected server/s.

Notes:

To configure multiple servers or a server group with the same Event Triggers:

(1) configure a selected server

(2) use the Quick Clone button to propagate settings from that server to other server nodes.

Event Types are specific events configured by administrators for monitoring a server/node. The Define

Event Triggers procedure is used to define the conditions under which a server will generate an Event

of a specific severity when an event (of the type) occurs. The Event Types supported in the current

version of Zend Platform are described below.

Zend Platform

83

Security

The Security tab is accessed from PHP Intelligence | Security.

Note:

If the Message "Monitoring is currently disabled" appears on screen, go to Configuration| PHP

Configuration and set the directive zend_monitor.enable=On.

This tab allows users to select specific types of information that should not be included in the "Event

Context" section of Event Details.

Figure: Event Context

Information excluded from the Event Context will be replaced with the following message: <BLOCKED

VALUE>.

Why Configure Security Settings?

The primary reason for securing information is to prevent the storage, handling and distribution of

sensitive information such as user names, passwords and credit card numbers. This information is

collected as part of the Platform diagnostic process. However, only the context and not the

information can contribute to understanding why the Event occurred. Therefore, more sensitive

information can be chosen to not be collected when compiling Event Details.

An additional reason for using the Security Blacklist is to prevent inadvertently sending sensitive

information by e-mail when using the Event Triggers option that automatically distributes Event

Details to e-mail addresses.

Security settings can provide an ultimate Compliance solution for confirming to data security protocols

such as PCI Certification

The possible actions on this tab are:

 Configure a list of variables to be excluded for a specific server (the value of excluded

variables will not be stored in the DB).

 Choose specific Data Types that should not be displayed in Event Details

 Clone Settings to be applied to other servers in the cluster.

Zend Platform User Guide

84

Configuring Security Settings

The following procedure describes how to configure the Security list for blocking the collection of

sensitive data in PHP Intelligence events.

To configure security settings:

1. Go to PHP Intelligence | Security.

2. In the Parameters area, add a list of parameters that their value should not be

collected and displayed in the Event's details.

Add parameters one at a time in the input field and click to add the parameters

to the list.

Note: The parameters input filed is case sensitive, therefore if there are parameters

that appear in the code in different cases all the possible variations should be added

3. In the Context areas, select the contexts that can possibly include the parameters.

4. Click to apply changes.

After saving the Security settings, all subsequent Events will not include the specified information in

the Event Details. additionally the information will no longer be be stored in the Events Database.

These settings will apply to the selected server (the server name appears on the top of the tab).

These settings can be applied to additional servers using the Clone Settings option.

Example:

If we have a parameter called password we can add it in the security tab as a parameter

that should not be included along with the possible parameter's context 'POST'. Now,

when an event occurs the 'password' parameter instead of displaying 'password=1234'

the Event Context's POST section, will show 'password=<BLOCKED_VALUE>'. If there is

also a parameter called 'PASSWORD' it too should be added to the list of parameters that

is case sensitive.

Zend Platform

85

Event Actions

The Event Actions tab is accessed from PHP Intelligence | Event Actions.

Event Actions provide several options for distributing the content of Events to a third party.

Distributing Event information can be leveraged to inform other people (e-mail) or to be implemented

into another application such as a bug tracking system (URL) or by using SNMP Traps.

Actions can be applied to Events in two ways:

1. In cases when the Event Type itself should always be distributed.

For example set an Event Action on all HTTP Error Events to inform the Web administrator

that pages are returning an error.

2. In cases when only a specific event should be sent on.

For example if there are specific Event Details that require the attention of someone who

does not have Zend Platform installed (this is done directly from the Event Details by clicking

"Report Event").

Note:

Use the Security tab options to prevent the storage, handling and distribution of sensitive information

To configure Event Actions go to: PHP Intelligence | Event Actions.

There are two steps to defining event actions. The first is to define "Actions" and the second is to

define "Action Rules".

 Actions determine how the Event Details will be sent by specifying an e-mail address, a URL

or an SNMP alert.

 Actions Rules determine which events by specific criteria will be sent.

Note:

Read more about SNMP Traps in About SNMP.

Zend Platform User Guide

86

Defining Actions

Clicking the Event Actions URL opens the Actions dialog. This dialog allows you to define or remove

Actions for the entire cluster.

Figure: Event Actions

From the Actions screen you can:

 Add/remove global Action Types from a central administrative station

 View Action Types currently defined in the system

To add an Action:

1. Select one of the options from the Action Type drop-down list.

2. Depending on the selection e-mail, URL or SNMP trap the action type details will

change.

3. Enter the information according to the selected Action Type:

• Target URL for the action type "Submit a report to the specified URL"

• Recipient Address and Subject for the Action Type, "Send a report via e-mail".

• SNMP:

o NMS Target Machine - The SNMP Trap's destination address.

o Community String - The Community and port (default port is 162, and the

default community string is 'public'). This is an identifier, without it the

NMS will not accept incoming messages.

o Download MIB (Management Information Base) file - Browse to find the

MIB file and place it in the NMS. If a problem occurs accessing the MIB file,

the relevant error will be given instead.

• Click "Add" to add the new Action Type to the "Current Action Types" list.

Zend Platform

87

Note:

These Action Types can now be associated with Action Rules (see below). You can also change or

remove the Action Type settings at any time.

Zend Platform supports three types of reports:

 E-mail Report - sends a text report to an e-mail recipient. This type of report is typically

preferred by users who need to be notified of an event, but do not require the content of the

report to be available for further use. To properly report an event via e-mail, make sure to

set your preferences in the Mail Settings section of the Preferences page.

 Send SNMP Trap - Sends an SNMP trap to a NMS address containing the events

parameters. SNMP traps are used in order to send an SNMP alert to a management server.

The process is as follows; once the SNMP trap action is set and an action rule with it is

defined, as soon as there is an occurrence in the system the rule is triggered and an SNMP

trap will be sent to the NMS address provided by the user when the action was set.

 XML Report - a structured XML report which is not only informative, but which can be made

available for further use. For example, the .xml event data could be used as input for a

monitoring script. The structure of the .xml report follows the structure shown below:

Example:

#each attribute exists if it exists in the Event Details screen

<?xml version="1.0" ?>

<event type event_id timestamp time severity>

#if there is an error:

 <error type>error text</error>

 <stats triggered_value avg load_average/>

#if there is a source file:

 <source file line/>

 <script name host uri>

 <vardata type name value/>

 </script>

#if there is a function:

 <function name>

 <args>

 <arg num value/>

 </args>

 </function>

#if there are included files:

 <included_files>

 <file name\>

 </included_files>

#if there is a backtrace for this event:

 <backtrace>

 <call depth function file line/>

 </backtrace>

</event>

Zend Platform User Guide

88

Defining Action Rules

The Define Action Rules screen is accessed from: PHP Intelligence | Action Rules.

This screen ties together the elements of the rule-based notification system (monitoring and

reporting) by creating a logical rule that can be understood as follows:

When an Event of a user-defined Severity occurs in the user-designated Server, a specific Event

Action (notification) will be invoked.

Figure: Define Action Rules

From this screen you can:

 Add/remove an Action Rule currently defined in the system.

 View Action Rules currently defined for an Action Type in the system.

 Edit an existing Action Rule and apply the changes.

 Disable an Action Rule.

To define Action Rules for a server:

1. Select the Define Action Rules tab

2. Enter Action Rule parameters in the Add a New Action Rule area.

a. Select an Event from the Events combo. (For a complete list of Events

supported in the current version of Zend Platform, refer to the Event List

tab above.)

b. Select the severity from the drop-down list.

c. Select a Server from the drop-down list of servers currently defined in the

system.

d. Select an Action from the drop-down list of Actions currently defined in the

system.

3. Click "Add" or "Save".

a. Clicking "Add" adds the new Action Rule to the list of Action Rules defined

in the system.

b. Clicking "Save" applies the changes to a rule that you have edited.

Note:

Read more about how your organization can leverage information generated by events in the Tutorial

- "Integrating Existing and Legacy Applications".

Zend Platform

89

Event Details

Contents:

Controlling Information Displayed in an Event Aggregate Hints

Customizing Events Event Aggregation Rules

Change Event Details Event Diagnostics Settings

Event Details are accessed when clicking on an Event In the Dashboard and the Event List (The Event

list for a selected server is also accessible from the System Health Tab.

Event Details are generated in accordance to Event Triggers. Event Details are a diagnostic tool that

provides a complete audit trail and options for investigating and resolving events.

Event Details are viewed in several ways. The regular way of viewing events is from Platform. Events

can be configured to be sent by e-mail recipients or to a URL (in XML format). However, Event Details

always include the same information regardless of the viewed output (Regular Event Details, XML or

e-mail).

Figure: Event Details

Zend Platform User Guide

90

 Event Details include five sections:

1. General Information

2. Event Occurrence Info

3. Zend Studio Diagnostics

4. Event Context

i. Function Data

ii. Variables

iii. Backtrace

iv. Included Files

v. Show Source Code

5. Event Administration

The information included in Event Details varies according to event type. For example: PHP Error

Event Details include different information than a Slow Script Execution Event Details, simply because

these events require different information to perform diagnostic analysis.

For example: A PHP Error will include in the General Information, the error’s text and in the Event

Context, the Function’s Data. However, in a Slow Script Execution Error there is no need for the error

text or the function’s data and there will be information on how long the script ran for, included files

and the load average at the time of the event.

Note:

If there is not relevant data to display in an Event Details screen, the section will not be included

rather than appearing empty.

General Information

The general information section of the Event Details provides basic information about the event

(depending on the event’s type) as follows:

Figure: Event Details - General Information

 Title - The top of the Event Details, displays the event that generated the Error and the Event

ID (Error #). The Event ID can later be used, to locate the event in the Event List or the

Console in the filter's Find section.

 Severity Level - An additional notification is added to severe events.

 Event Status - The Status of the event is indicated for all statuses except Opened.

 Requested URL - The requested URL

 Main Filename - The URL’s main file

 Source File - The path to the Source File and line in the code that triggered the event.

Zend Platform

91

Note:

Especially with code related errors, this information can provide an immediate indication to the source

of the error in the code.

 Trigger Value - The value type that triggered the event (runtime,output size,memory

consumption etc.).

 CPU Load - The CPU load when the event occurred.

 Aggregate Hint - Shows the Aggregate Hint for this event

 PHP Error - Shows the type of error that triggered the event.

*Not all the parameters (above) are included in all events, only in events that require this

information.

Event Occurrence Info

To prevent an event from being continually reported for the same or similar event, PHP Intelligence

enforces Aggregation Rules. These rules are based on a set of predetermined algorithms that

determine which events are identical or are similar, to the extent they can be reported as a single

Event. Aggregation Rules are also aware of events that occur on nodes belonging to a cluster

(grouped servers).

Aggregation information is displayed in event details to identify the number of times the event

occurred and in case of Groups the information is expanded to include the servers on which the event

occurred and the number of occurrences.

Figure: Event Details - Event Occurrence Info

The Event Occurrence Info section shows, the total number of occurrences, the time and date of the

first and last occurrence and the first server (and virtual host) on which the event occurred.

In cases where an event occurred on several servers belonging to the same group, an additional

expandable list is added. This list displays occurrences per server, i.e. the server’s name, and total

number of times the event occurred on the server.

Figure: Event Details - Aggregated Event

Zend Platform User Guide

92

Zend Studio Diagnostics

The Studio Diagnostics section shows the advanced diagnostic options that can be performed on the

event’s data.

These diagnostic options reconstruct the precise conditions that generated the event by recreating the

request with the same parameters that were in the original request (Information such as:

GET/POST/COOKIE/etc.).

Note:

The recreation process will not create an additional event.

Figure: Event Details - Event Diagnostic Options

The diagnostic options that can be applied to event information are as follows:

 Test URL - Loads the exact same URL from the event with the exact same parameters

(GET/POST/COOKIE/HTTP HEADERS/etc.) and shows the script’s output in the browser.

Note:

The Test URL option does not require the Integration with Zend Studio.

 Reproduce in Debugger - Initiates a Debug session of this URL in Studio.

 Reproduce in Profiler - Profiles the URL, using the Studio Profiler with the same parameters

(GET/POST/COOKIE/HTTP HEADERS/etc).

 Show Source Code - Opens the file where the event occurred in Studio. This option provides

a means for editing files and implementing changes to multiple servers using Studio.

 Change Server - This link opens the "Event Diagnostics Settings" dialog. Through this dialog

an event can be configured to be reproduced on a server other than the one that initially

triggered the Event.

Important: Debug URL, Profile URL and Show Source Code can be activated when the following

conditions are met:

1. Zend Debugger is installed on the server where the event occurred.

2. Studio is open.

3. The Platform Administration preferences (Zend Central | Preferences) are configured to the

correct port (The port on which Studio is listening), the Studio IP is correct (the exact IP of

the computer where Studio resides), and the Debugger allows a debug session from Platform

Administration (by going to: Zend Central | Configure PHP Settings | Zend | Zend Debugger

and verifying the correct IP/S in the zend_debugger.allow_hosts directive).

Zend Platform

93

Event Context

Event context includes relevant information available at the time of the occurrence. This information

varies according to the type of event generated.

When defining Security settings for excluding information collected by PHP Intelligence the message

<BLOCKED VALUE> will appear instead of variable's parameters.

There are four main Event context categories:

1. Function Data

2. Variables

3. Backtrace

4. Included Files

Figure: Event Details - Event Context

Sensitive content such as passwords and credit card details can be excluded from the Event Context.

These parameters will be replaced by the message: <BLOCKED VALUE>.

To find out more about excluding values see "Security".

Function Data

Function Data is only added to function related Event Details. This addition shows the function’s name

and parameters at the time the event occurred.

The function always appears as a link. This link directs to the function’s description in the online PHP

manual at: http://devzone.zend.com/manual

Note:

The link to the PHP manual also appears for user-defined functions. These functions naturally, will not

be found in the PHP manual however, it is a good indication as to which functions are PHP functions

and which are user-defined.

Variables

The information included in the Variables section, includes all variables data saved when the event

occurred, such as: GET, POST, COOKIE, SERVER, etc.

The GET, POST, COOKIE and SERVER sections will always be displayed even if they are empty. This

indicates that there was no available data at the time the event occurred.

Users may choose to change the type of information collected and displayed in an event (Change

Event Details).

http://devzone.zend.com/manual

Zend Platform User Guide

94

Backtrace

Backtrace only appears in function related events. The listed functions are the functions that lead to

the actual function (occurrence) that triggered the error.

Functions are listed in chronological order from the most recent to the first function that was called.

There are two options for viewing Backtraced functions, in a pop-up screen or in Zend

Studio.

 - Shows the function call in a pop-up screen.

 - Shows the function call in Zend Studio.

Included Files

The Included Files section only appears in slow script error events. The files listed are all the files that

are included in the PHP script that caused the error to occur.

Show Source Code

Shows event data in the Event details in the form of an expandable text field. This option opens the

file in the section of code where the event occurred.

To view the source code in Event Details:

Click Show Source Code to expand the text area.

Figure: Show Source Code

Zend Platform

95

Event Administration

The Event Administration section includes all the actions that can be applied to an event. See

Controlling Information Displayed in an Event, to learn how to disable these options for certain users.

Figure: Event Details - Event Administration Actions

The applicable actions (Buttons) are as follows:

 Ignore - Ignores future instances of this event (i.e., changes the event status to ignore).

Therefore, if the same event occurs again, Platform will not open a new event.

 Preserve - Keeps the event in the database even during database cleanups.

 Close - Closes the event (i.e., changes the event status to closed). Therefore, if this event

occurs again, Platform will open a new event.

 Delete - Deletes the event (i.e., removes the event entirely from the database.)

 Reopen - Changes the event’s status from closed to open.

 Report - Adds an additional dialog for selecting an action to apply to a single event. The

options are Save as XML and e-mail (the e-mail address is as defined in PHP Intelligence |

Event Actions in the Actions tab).

Reproduce Event on Another Server

The ability to reproduce an Event on a different server provides an additional option for strengthening

the link between development and production by enabling development teams to reproduce an event

that occurred on a production server on a development server. Reproducing an Event on a

development server will allow to diagnose and investigate the event without causing and additional

disruption to the production server.

The "Reproduce Event on Another Server" option is only available from "Event Details".

Important: Reproduce Event on Another Server can be activated when the following conditions are

met:

1. Zend Debugger is installed on the server where the event occurred.

2. Studio is open.

3. The Platform Administration preferences (Zend Central | Preferences) are configured to the

correct port (The port on which Studio is listening), the Studio IP is correct (the exact IP of

the computer where Studio resides), and the Debugger allows a debug session from Platform

Administration (by going to: Zend Central | Configure PHP Settings | Zend | Zend Debugger

and verifying the correct IP/S in the zend_debugger.allow_hosts directive).

Zend Platform User Guide

96

Controlling Information Displayed in an Event

Platform’s User Management settings (Zend Central | User Management), can be utilized to set

restrictions per User Group. These restrictions can control permissions to view event information and

prevent certain User Groups from changing Event Details status.

The following restrictions can be applied to Event Details information:

 Delete an event

 Ignore an event

 Close an event

 Reopen an event

 See the event internal data in the Event Details

 See the event source code in the Event Details

 Use the Studio Diagnostics in the Event Details

 Blacklist event context details.

These limitations can prove to be especially useful for the organization. For example: when working in

collaboration with external organizations that should not be permitted to view information such as the

source code.

Another example of the Event Details restrictions is seen when implementing development lifecycle

processes that require that certain groups be limited to the actions that they can do with an event

such as closing or reopening.

Note:

To find out how to create a User Group, go to: "User Management".

Zend Platform

97

Customizing Events

There are several ways to customize which suit different requirements.

 Custom Events - for generating a User Defined event that is not based on specific PHP

Intelligence, Event Triggers.

 Event Callbacks - for adding user defined information to Event Details.

 Aggregation API - for setting different events to be aggregated with other events.

Note:

To exclude files from being monitored, add ini_set("zend_monitor.enable",0); at the beginning of the

script you don't want to monitor (you can enable again later in the request if you want by changing

the values to 1).

Custom Events

Custom events are a unique type of event that is provided for Platform users in order to initiate

events in their scripts. This type of event is different than other event types in that it allows

controlling event generation as opposed to the other events that are triggered by a certain

occurrence.

Custom events are used to generate an event whenever the API function monitor_custom_event() is

called from the PHP script.

Description:

This event type enables the generation of an event on occurrences that are not necessarily built-in

Platform events (error and performance issues). Custom events are used whenever you decide that it

is significant to generate an event in a certain situation. Each event type is given a name for easy

identification ($type).

Function Usage:

void monitor_custom_event(string $class, string $text[, integer $severe, mixed $user_data])

Parameters:

 $class - helps to define several types of custom events. This description will be showed in the

Event List and in the Event Details.

 $text - error text used to describe the reason for the event. This text will appear in the Event

Details.

 $severe - the severity level of the triggered event, default value is Severe.

 $user_data - adds a PHP variable that will be viewed in the Event Details (in Event Context->

Variables->User Defined). This forms the stored Event Context (similar to the information

obtained in a PHP error event).

Aggregation takes place for these events when, two events occur in the same place and have the

same $class $text $sever(ity).

When viewing these events in PHP Intelligence | Event List, they can be filtered by the Custom Events

category. More information about this API can be found in: Monitor Functions.

Zend Platform User Guide

98

Note:

Event Actions defined for these events should be set to "send to URL" rather than "sending by e-mail"

as there is only one definition for these events and Event Details sent to a URL can be easily

forwarded elsewhere. This is to prevent overloading e-mail. If we use the e-mail action, for every

custom event, e-mail will be sent, and there can be many classes of custom events. However if the

URL action is used, a script can be used to identify the event’s class and different behaviors can be

implemented according to class (To find out how to leverage Event Details information sent to URLs

go to:Integrating Existing and Legacy Applications).

Event Callbacks

The event callback mechanism is used for viewing additional information about local variables in order

to investigate what happened when an event was generated. The additional information is displayed in

the Event Details.

Event Callbacks are created by extending information already provided in Event Details to provide an

audit trail for problem conclusion.

Register and Un-register User Event Handlers

The event callback mechanism uses the following API functions:

 register_event_handler

 unregister_event_handler

Register Event Handler

To register a user function as an event handler, the following API can be implemented:

register_event_handler($event_handler_func

[[,$handler_register_name],$event_type_mask])

Parameters:

 $event_handler_func - The first argument is a callback function that will be called when the

event is triggered. Object methods may also be statically invoked using this function, by

passing the array ($objectname, $methodname) to the function parameter.

 $handler_register_name - The second argument is optional and represents the name under

which the function is registered. If no name is specified, the function will be registered under

its own name.

 $event_type_mask - The third parameter is an optional mask of event types on which the

handler should called. The default setting is MONITOR_EVENT_ALL.

When a monitor event is triggered, all the user event handlers are called and the return value from

the handler is saved in an array keyed by the name under which the event handler was registered.

The 'event handler’ results array, is saved in the script_runs table. More information about this API

can be found in: Monitor Functions.

Notes:

The first parameter is the name of the called function and it has to be a user-defined function. Built-in

functions will not work with this API.

This function can get as a parameter the event type by which it was called.

If there is a PHP function register_error_handler in the script, events will not be reported. To report

events call the function monitor_pass_events in the error handler.

Global Events should not be changed under any circumstances as they may produce unpredictable

results.

Zend Platform

99

Un-register Event Handler

The un-register event handler allows you to un-register an event handler. The API returns false if it

cannot find a handler registered under the supplied name.

unregister_event_handler($register_event_handler)

Note:

Do not add the unregister_event_handler function to the end of scripts if you need to generate

memory and script execution Events. These event types generate the event only after the script is

executed and if unregister_event_handler is added it will stop the event from being generated.

The event types that should not include unregister_event_handler are as follows:

 Slow Script Execution Absolute

 Slow Script Execution Relative

 Inconsistent Output Size

Zend Platform User Guide

100

Change Event Details

The information included in the Variables section, includes all variables data saved when the event

occurred, such as: GET, POST, COOKIE, SERVER, etc.

The GET, POST, COOKIE and SERVER sections will always be displayed even if they are empty. This

indicates that there was no available data at the time the event occurred.

Users may choose to change the type of information collected and displayed in an event at the time of

the occurrence.

The following procedure describes how to define the type of variables data that will be displayed in

Event Details.

To define variable data types:

1. Go to: Platform | Dashboard | Configure PHP Settings and locate the function

zend_monitor.report_variables_data from the tree under: Directives | Extensions |

Zend Platform.

2. Select the Variables types that you want displayed in Event Details by selecting the

check box to the left of each variable and clicking "Save".

The new settings will be applied as soon as the Web Server is restarted.

Note:

Changes applied to the Event Details will take affect after the Server is restarted. Events that occurred

before the changes will not be affected.

Zend Platform

101

Aggregate Hints

"monitor_set_aggregation_hint (page name)"

This API is a global variable that can be set anywhere and in any hierarchy. The purpose of this API is

to incorporate locations of occurrences in the script.

This API is used when there are events that require the location in the script for diagnosing the reason

behind the event occurring.

Example:

Global Events require the application that generated the event. Adding the Hint API can assist

in the identification process.

Usage Example:

Out of the box, Platform aggregates events of the same type under the same script. To

instruct Platform to aggregate even when your application loads other PHP scripts via the URL

get parameter, you need to use the "monitor_set_aggregation_hint()" function

This example uses opensource SugarCRM with URLs such as:

Calling up Calendar.php module in SugarCRM the url is

 http://localhost/sugar/index.php?module=Calendar&action=index

Calling up Activities.php module in SugarCRM the url is

 http://localhost/sugar/index.php?module=Activities&action=index

The actual aggregation should be done by the ?module=XXXXX loaded via index.php in

SugarCRM, so its referred to by the http get variable $_GET["getvariable"] and for

SugarCRM the get variable is "module" and we can aggregate all calendar.php events by

themselves, and all activities.php events under its own script. You would call this function at

the top of your index.php code as follows:

monitor_set_aggregation_hint($_GET["module"]);

// this example will work for SugarCRM

This instructs Platform to aggregate for specific applications.

Zend Platform User Guide

102

Event Aggregation Rules

Event aggregation rules determine which events are aggregated into a single Event Detail.

There are four types of checks depending on the event type:

1. Database Error

2. Zend Error (PHP Error)

3. Function Error

4. Query Error

The Collector checks to see if these events occurred in the same source file based on the Line,

Function and Hint. This is why it is important to used Hints if this level of separation is necessary.

Note:

To read more about the event aggregation mechanism go to: Appendix B - Event Aggregation

Mechanism.

Zend Platform

103

Event Diagnostics Settings

The Advanced Diagnostics Settings dialog is accessed from an Event Details page.

This procedure describes how to use the Event Details Event Diagnostics dialog. Through this dialog

an event can be configured to be reproduced on a server other than the one that initially triggered the

Event. This option is useful for reproducing an event on a different server to diagnose if the event is

globally reproducible or it occurred due to server specific issues. Reproducing an event on a different

server also means that you can reproduce a production related event on a development server

without interrupting your production environment. The actual reproduction is triggered from the Event

Detail's "Zend Studio diagnostics" section. The Event diagnostics settings determine the server on

which the diagnostics will be applied ("Test URL", "Reproduce in Debugger", "Reproduce in Profiler"

and "Show Source Code").

Diagnostic tools and Event Diagnostics can only be applied to existing Events.

To use the Event Details Event Diagnostics:

1. In an Event, go to "Zend Studio Diagnostics" and Click the link called "Change

Server".

The Event Diagnostics dialog will be displayed.

2. Choose the server on which to reproduce the event:

• Originating Server - reproduces the event on the server the event originated.

• Alternate Server - allows users to define another server on which to reproduce

the event.

3. Click finish to save the settings.

These settings will be applied to all events they are also user specific (logging in with your user name

remembers your specific settings)

Zend Platform User Guide

104

Performance
Contents:

Performance Lifecycle Settings

Implementing the Performance Lifecycle File View

Performance Optimization Tools URLs

Configuring Performance Testing

Performance Tuning

Performance Console Zend Optimizer

The Zend Performance module provides a collection of comprehensive tools for enhancing PHP Web

applications and Server performance in Enterprises.

Using Performance Provides:

 Increased server throughput, with less hardware

 Improved user-experience, with faster response time and download time

 Reduced stress on production database servers and HTTP servers

 Reduced costs on new hardware purchases and IT maintenance operations

 Better utilization of existing hardware resources and capacity

Overview

The Zend Performance module consists of several components for providing server performance

optimization:

 Performance Tests

 Code Optimization

 Content Caching (full-page, partial, URL based and SHM/Disk caching)

 Code Acceleration

 File Compression

Performance Tests

Run tests to monitor the improvement achieved in performance by Platform Performance. The

available tests are: By URL, Downloads and Analyze Site.

Code Optimization

Code optimization begins from the first moment Platform is installed. The Zend optimization

component performs several passes, each pass searches for specific points in the PHP code that are

known to have a negative affect on performance and changes them for faster execution.

Content Caching

Content Caching dramatically reduces the number of times your server must run complex scripts,

execute resource-intensive database queries, or call external web services.

How it works: Server-side caching eliminates the need to return to databases, duplicate processes

or re-build a web page for each page access. Cached versions of any file or URL can be maintained for

any amount of time that you determine. Fully configurable parameters determine what to cache and

Zend Platform

105

based on which conditions. Full Page caching provides an additional performance boost for end-users

by utilizing Client-Side Caching. No code-level modifications are required. Moreover, you can use the

Zend API's for partial and conditional caching of parts of script functionality (Output Cache

Functions,Zend Cache Functions).

Code Acceleration

Code Acceleration begins from the first moment Platform is installed. The Zend acceleration

component performs a pre-compilation of your PHP scripts, eliminating the lag time and interpreter

time involved in script parsing. During compilation, the code is also optimized, resulting in even faster

execution time.

How it works: Server-side pre-compilation generates persistent bytecode. Modified scripts are

automatically detected. Compiled scripts are optimized using advanced code optimization methods.

File Compression

File Compression increases the end-user download speed and decreases the workload on your http

server. Better than any other compression option due to integration with Dynamic Content Caching

eliminating the time it takes to run the compression.

How it works: Specific browser capabilities are auto-detected. If browser supports gzip format, the

results are compressed prior to returning to the user. Both the original and the compressed version

are cached and reused, depending on browser capability and cache lifetime.

Zend Platform User Guide

106

Performance

Users are prompted to select a node before entering the Performance options therefore all actions and

settings will be applied to the selected node.

In addition, the top bar indicates the name of the node.

The Quick Clone option in the Settings and File View tab provide shortcut to propagating changes

done in these tabs to other nodes.

There are several Performance related features as follows:

 Console - a summary for statistical information about all of Platform’s Performance’s

operating modules.

 Settings - globally define performance settings for: Code Acceleration, Dynamic Content

Caching, File Compression and Zend Download Server.

 File View - for configuring performance configurations for specific files or directories.

 URL - for defining caching settings based on a URL.

 Testing - to view the improvement achieved in performance by Platform Performance.

 Tuning - for fine tuning Accelerator performance to improve PHP application performance.

Zend Platform

107

Performance Lifecycle

Maintaining Web applications at optimal performance levels is a necessary requirement for ensuring

customer satisfaction and organizational efficiency. Platform’s Performance module provides tools for

optimizing Web application performance by employing a detailed performance enhancement method -

"The Performance Lifecycle". The Performance Lifecycle is a process of calibrating Platform to provide

optimal performance boost to business critical Web applications.

Deploying Platform in organizations will improve the overall performance of Web

applications by:

 Enhancing code and download performance.

 Employing full and partial page caching capabilities.

 Preserving memory consumption through file compression.

The use of Platform Performance tools in development and production environments provides a means

for testing and maintaining Web application performance.

The following illustration displays the three stages of the Performance Lifecycle.

Figure: Performance Lifecycle

The Platform Performance Lifecycle is an iterative cycle for analyzing Web application performance.

The purpose of this cycle is to identify areas that require Platform calibration and areas that require

PHP code optimization.

The Performance Lifecycle Baselines (stages) are as follows:

Zend Baseline

The first Baseline is the Zend Baseline. This baseline measures performance based on Platform’s

default parameters that are immediately activated upon installation. The default parameters are,

Event Trigger settings, Code Optimization and Code Acceleration. Once Platform is installed, these

components automatically begin to work on the PHP code. The result is an immediate improvement to

the Web application and initial PHP Intelligence event generation (based on default Event Trigger

settings).

Zend Platform User Guide

108

The purpose of the Zend Baseline is to evaluate overall performance in relation to the Platform

defaults. This information is used as an initial starting point for subsequent calibration and

optimizations.

Note:

In the Zend Baseline stage, it is common to experience abnormal event generation behavior (too

many or too little events generated). This is a normal part of the initial calibration stage, necessary for

identifying how to adjust performance settings to obtain optimal Web application performance.

Site Baseline

The second Baseline is the actual calibration process. Based on information collected and observed in

the first Baseline, the performance settings can be calibrated to suit each organization’s specific Web

application. The Site Baseline enables one to obtain insight into the overall performance of the Web

application. Once the Site Baseline is established by configuring Event Triggers these events can be

further analyzed to evaluate the mode of action required to optimize the Web application’s

performance. At this point it is recommended to perform a Site Analysis to benchmark the Web

application. The Benchmark information provides an initial indication of the Web application’s current

performance before applying the additional performance tools. This will provide a point of comparison

to view improvements that occur after subsequent optimization is done with Platform.

After the Site analysis, the PHP code can be optimized. Optimization is obtained by implementing

performance tools to areas in the PHP that exceed the Site Baseline settings (still generate events).

There are four possible choices for adding performance features to PHP code:

1. Full page caching

2. Partial page caching

3. Compression

4. Blacklist files or directories

Completing optimization of the Site Baseline brings us to the Optimized Baseline.

Optimized Baseline

The Optimized Baseline represents the stage where the Web application is optimized and Platform is

calibrated with the Web application. From this stable stage all that is left to do is to let Platform

perform regular production monitoring.

Note:

When the Web application is re-deployed or changes are made, this process should be repeated from

the Site Baseline stage in order to reestablish the Optimized Baseline.

Zend Platform

109

Implementing the Performance Lifecycle

The following section provides a detailed instructional overview of performance optimization features

and components for implementing the Performance Lifecycle.

Benchmark - Site Analysis

Site Analysis enables to obtain insight into the overall performance of Web applications. Benchmark

information provides an initial indication of the Web application’s current performance. This

information can be used as a starting point for observing the performance boost gained applying the

performance tools. Benchmarking measures Web server performance and durability.

In Platform, Benchmarking is achieved through the Testing screen (Performance | Testing).

This screen includes three options.

 Test URL - tests a single script, running Performance and Compression tests at the same

time. The test results indicate the script improvements achieved by Code Acceleration,

Dynamic Content Caching and File Compression.

 Analyze Site - tests performance for the entire Web application, running the Performance

test separate from the Compression test. The test results indicate the overall script

improvements achieved by Code Acceleration, Dynamic Content Caching and File

Compression and the popularity of each file.

 Test Download - tests the efficiency of the Zend Download Server. This test is addressed in

the Enterprise Server chapter titled "Zend Download Server".

The above-mentioned tests analyze an entire site’s performance or monitor a single script. The test

results can be further used outside Zend Platform as they can be printed or sent by e-mail.

Notes:

Since testing may take a while to run, it is suggested that you choose only the most recently added

files. You may select as many files as you wish; nonetheless this will increase the duration of the test.

Prior to running the Compression Test and in order to ensure accurate results, you may want to add

query strings to the script path entries.

When running Performance Tests, query strings can only be added to cached scripts, to check for

performance gain.

Zend Platform User Guide

110

Performance Optimization Tools

Performance optimization tools are used once it is apparent the code is performing as it should, and

the Event Triggers are calibrated.

From this stage on the performance optimization tools can be applied to further enhance Web

application performance.

There are several levels of performance optimization that can be applied to files: Caching (full page),

Acceleration and Compression.

Applying these three settings to your PHP code provides optimal performance boost.

The default settings for these optimization tools are as follows:

 Caching - Default setting Off

Description - Runs code and saves the output on the server

 Acceleration - Default setting On

Description - Compiles the Code and saves the compiled code on the server

 Compression - Default setting Off

Description - Saves a compressed version of the code on the server

To apply optimization tools to all of the PHP files on the server, caching and compression must be

activated.

To activate/disable Caching, Compression or Acceleration, go to Performance | Settings and modify

the different options.

Zend Platform

111

Configuring Performance

The Performance Settings are modified in the Console tab accessed from Performance | Console or

Performance | Settings.

Customizing performance settings is a way to benefit from Platform's advance performance features.

Setting initial defaults enable the use of basic performance features. Additional configurations can be

applied, to customize performance to correspond with organization-specific requirements. These

configurations are addressed in Performance Lifecycle.

Performance Tab

Platform’s Performance settings are configured and viewed from: Performance |Console.

The Console section of the Performance tab is a main performance management screen through which

basic details and commonly used Performance actions can be viewed as follows:

Figure: Performance Tab - Console

Initially the Console shows the installation defaults regarding which features are enabled (On or Off).

Once changes are applied the console will be automatically updated with the new configuration

settings (In some most changes are applied by restarting the Web-Server).

The following table lists the details and options available from the Console tab:

Component Console Details Actions

Overall

Performance

Gain

Shows the last

performance test

results.

Update - leads to Performance | Testing | Analyze

Site. From this Tab site analysis tests can be run and

results can be viewed. Get Latest Detailed

Performance Gain - leads to Performance | Testing |

Analyze Site, with the last performance test results

expanded on the screen.

Code

Acceleration

Shows the Code

Acceleration

Reset - Clears the Code Accelerator memory. Settings

- Leads to the Code Acceleration section of the

Zend Platform User Guide

112

Component Console Details Actions

component’s status

(On/Off) and basic code

acceleration statistics.

Settings Tab.

Full-Page

Content

Caching

Shows the Content

Caching component’s

status (On/Off) and

basic Content Caching

statistics.

Reset - Clears the content from the cache. Settings -

Leads to the Full-Page Caching section of the Settings

Tab. Add/Remove - leads to Performance | File View,

where Cache settings can be added/Removed.

Partial

Caching

 Reset - Clears the content from the cache.

Settings - Leads to the Partial Caching section of the

Settings Tab.

File

Compression

Shows the Compression

component’s status

(On/Off) and file

compression settings.

Settings - Leads to the File Compression section of

the Settings Tab.

At the bottom of the Console there are shortcuts to individual Test functions as follows:

 Run Performance Test - runs a test that evaluates improved performance via Code

Acceleration and Dynamic Content Caching.

 Run Compression Test - runs a test that evaluates improved performance via File

Compression.

Note:

Selecting one of these options opens a link to the appropriate option in the Testing Tab (Performance

| Testing) and will not run the test before setting the preferences.

Once the overall functionality of the console has been established, the console can be used to apply

initial performance settings. These settings are related to the File View to make sure that all Virtual

Hosts are visible and select files to be cached (full page) in the Dynamic Content Caching section.

Zend Platform

113

Performance Console

The Console tab is accessed from Performance | Console.

The Performance tab's Console is a summary screen that provides statistical information about all of

Platform's Performance operating modules. Initially it shows the defaults at installation; it reflects

your changes as you customize your setup.

The Console tab includes shortcuts to individual Test functions, these include:

 Run Performance Test - runs the test that evaluates improved performance via Code

Acceleration and Dynamic Content Caching

 Run Compression Test - runs the test that evaluates improved performance via File

Compression

Zend Platform User Guide

114

Settings

Contents:

Code Acceleration File Compression

Content Caching Code Compression

The Settings tab is accessed from Performance | Settings.

From the Performance Settings tab for a specific node, you can globally define the settings for all the

modules of the Performance suite of tools: Code Acceleration, Content Caching and File Compression.

From this configuration pane, you can:

 Configure performance monitoring and improve functions for a specific node

 Manage Performance settings for the network from a central administrative station

Code Acceleration Settings

 Code Acceleration Enable

"On" - The Code Acceleration is active and working.

"Off" - The Code Acceleration is not in use.

 Accelerator Memory

The amount of memory allocated for use by the Code Acceleration for storing data structures

and accelerated files.

Recommended: The memory allocated should correlate with the amount of scripts that you

have, their size and complexity. Typically, 32MB is enough.

 Memory Reclaim Threshold

During normal operation, some of the Code Acceleration memory may become unavailable

for use. When the Code Acceleration runs out of memory, it will check how much of its

memory is in use, and how much is unavailable. If the amount of unavailable memory is

beyond this reclaim threshold, the Accelerator will perform an automatic restart, to reclaim

all memory.

Recommended: 5%

 Maximum Accelerated Files

The maximal number of files that will be accelerated

Recommended: Set this value to about 20% more than the actual number of scripts on

your server. Typical memory usage ratio is a few hundred KB per thousand accelerated

scripts.

 Extensions for PHP Files

If your PHP files end with any other extension (rather than the default *.php extension), add

all the extensions here separated by commas.

Full Page Caching

 Caching Enabled

"On" - Full Page Caching is active and working.

"Off" - Full Page Caching is not being used.

Zend Platform

115

 Maximum Cache Size

The maximum disk size allocated for caching. Occasionally and for short periods, this value

may be exceeded but only until the next time that the cache cleaner deletes the files that

expired.

For unlimited cache size, enter "0".

 Minimum Free Diskspace

The minimum amount of free disk space that cannot be exceeded during caching. Reaching

this value will end any further caching. The caching will resume as soon as the space is

greater than this value.

 Maximum Cached File Size

The maximum output cache file size allowed. An output cache file that exceeds this value will

not be cached.

 Default Cache Lifetime

The lifetime (in seconds) of a cached data. The data will be re-generated if the cached

version is older than the expiration time.

 Default Dynamic Caching Conditions

By default, the Dynamic Content Caching will cache each request, based on its full URI. You

can modify the settings to be more general or more specific, as desired.

Partial Caching

 Caching Enabled

"On" - Partial Page Caching is active and working.

"Off" - Partial Caching is not being used.

 Caching Folders Depth Level

Define the level separation of content cached in the file system (can be used with

namespaces or without).

 Maximum Shared-Memory Cache Size

For shared memory caching, set the maximum amount of memory allocated for caching. An

error message will be printed to the web server's log when this limit is exceeded.

File Compression

 None

All files are sent to the browser as is.

 Only cached files

The cached files are transferred to the browser in a GZIP format, if the browser supports the

format. Other files are sent to the browser as is.

 All files

All files are sent to the browser in a GZIP format, if the browser supports the format.

Note:

Compressing all files may cause some overhead and affect the overall performance. Use "All files" if

your main concern is improving the download time for the user.

Zend Platform User Guide

116

Code Acceleration

Code Acceleration is the process of gaining a performance boost by eliminating the code compilation

time. Once PHP code is compiled for the first time, it is saved in the server’s memory. Each time the

code is called, the pre-compiled version is used instead of incurring a compilation lag each time the

code is used.

Note:

Acceleration should not be confused with Caching. Acceleration saves the compiled script in the

server’s memory whereas Caching saves the script’s output in the server’s memory.

When Should Files be Accelerated?

The general recommendation is to always use Code Acceleration to boost Web application

performance. Therefore, the default setting for Acceleration is set to "On".

When Not to Accelerate (Blacklist)?

There are some instances where it is preferable to disable acceleration for select files. Acceleration is

disabled by means of a Blacklist. Files should be added to the blacklist under the following conditions:

 Directories containing files that are larger than the Accelerators memory allocation or

containing more files than the allocated quantity of files.

 Large files that have high memory consumption

 Files that have long execution time (makes the compilation save irrelevant).

Increasing Accelerator Memory Allocation

The following procedure describes how to change the Accelerator's memory allocation. This is used as

an alternative to blacklisting files is to increase the Accelerator memory allocation. The accelerator

settings can be changed to increase allocated memory and the maximum quantity of files that can be

accelerated. This alternative depends on the amount of memory available for allocation to the

Accelerator.

When the Zend Accelerator is disabled, only cached scripts are tested.

To enable the Accelerator, set the 'zend_accelerator.enabled' directive in the php.ini file to 'On'.

To change Accelerator memory allocation:

1. Go to Performance | File View

2. In the Code Acceleration section:

a. Increase the Accelerator Memory

b. Increase the Maximum Accelerated Files (default 2000)

Note:

If the memory fills up quickly, especially if there is only a small amount of Accelerated files. Increase

the memory allocation or blacklist the file. Files exceeding allocated memory or quantity will not be

accelerated.

Zend Platform

117

Accelerator Duplicate Functions Fix

Some PHP code produces different opcodes for different situations, function defined or not. This

causes a discrepancy for the accelerator in situations where the accelerator caches one version, and

then a different situation occurs that requires a different function. If not addressed the script would

just cease to work and raise a "duplicate functions" error.

To maintain proper performance in situations like these the zend_accelerator.dups_fix parameter

should be activated. This parameter shuts down the Zend Accelerator’s duplicate function check, so

that the errors will not occur.

This parameter belongs to The Zend Accelerator settings in the PHP Settings screen (Configuration |

PHP Configuration | Extensions | Zend Platform).

Reset Accelerator

Programmatically resetting the Accelerator with accelerator_reset()

You can programmatically reset the Accelerator by calling the PHP function accelerator_reset() from

within your PHP script.

Note:

Under certain circumstances, such as a busy server or complex PHP processes, it may take a few

minutes to reset.

While Platform Performance Accelerator is being reset, a certain degree of server performance

degradation takes place, since the accelerated scripts cannot be used during the reset period. The

server will run as if Platform Performance had not been loaded.

Note:

Platform Performance Accelerator memory is also reset whenever the Web server is restarted.

Zend Platform User Guide

118

File Compression

The File Compression settings are accessed from Performance | Settings.

In order to maintain that Cached files improve overall performance, compression settings should be

defined. These settings determine which files should be compressed. The mode of compression is

GZIP format - if the browser supports this format (If not, the data will be transferred unzipped).

To define compression settings:

Go to: Performance | Settings and go to the File Compression section of the settings screen. Select

the file compression option that reflects your requirements.

Figure: File Compression Settings

File compression options are as follows:

 None - File outputs are sent to the browser as is.

 Only Cached Files - Only the cached files are transferred to the browser in a GZIP format-if

the browser supports the format. If not, the data will be transferred unzipped.

 All Files - Both accelerated and cached files are transferred to the browser in a GZIP format-if

the browser supports the format. If not, the data will be transferred unzipped.

Recommended:

The recommended compression option is "Only Cached Files", since the compression capabilities make

use of the Dynamic Content Caching and there is no extra overhead for generating the compressed

file (except for the very first time the URL is accessed.) Compressing accelerated files may cause

some overhead and affect the overall performance. Use "All Files" if your main concern is improving

the download time for the user.

Note:

There are some instances where it is preferable to deactivate compression for select files.

To deactivate compression:

 Deactivate compression entirely - should be done if the server is set to handle compression

to prevent compressing files twice and rendering them unusable or when using PHP’s

compression feature zlib.

 Setting compression to "cached files only" - should be done when there is a large quantity of

cached files and the rest of the files do not require compression.

 Blacklist - selectively disable compression for files do not require compression such as

pictures that are already compressed or small files that do not require compression.

 Files under 1k are not compressed at all.

Zend Platform

119

Code Compression

The Code Compression settings are accessed from Performance | Settings.

Code compression is the process of using less bandwidth and increasing performance by compressing

code before it is sent.

When to compress files

The default setting for file compression is Off. However, files should be compressed under the

following conditions:

 When the Web application’s users are accessing the Web application with various low

bandwidths that can benefit from the extra performance gained by compression.

 When there is a large quantity of Cached files.

When not to compress files

There are some instances where it is preferable to deactivate compression for select files.

Compression can be deactivated in several ways:

 Deactivate compression entirely - should be done if the server is set to handle compression

to prevent compressing files twice and rendering them unusable.

 Setting compression to cached files only - should be done when there is a large quantity of

cached files and the rest of the files do not require compression.

 Blacklist - selectively disable compression for files do not require compression such as

pictures that are already compressed or small files that do not require compression.

 When using PHP’s compression feature zlib.

Setting Code Compression

The following procedure describes how to change Code Compression settings.

To change File Compression settings:

1. Go to Performance | File View

2. Select the appropriate Setting:

a. None - disables Compression

b. Only Cached Files - applies compression to cached files only

c. All Files - collectively applies compression to all files (The list of files can

be viewed in Performance | File View).

Zend Platform User Guide

120

Content Caching

Contents:

Caching with the File View

Caching with the Performance Test Reports

Zend Cache Extension

URLs

Dynamic Content Caching (Full Page Caching) is the process of running code once and saving the

output on the server for reuse in a set time frame (Cache Lifetime). Each time the code is requested,

performance is improved by using the already run output instead of generating the same output each

time.

An additional performance boost can be gained by utilizing client-side caching for "full page" cached

content. Client-side caching is transparently supported in most browsers, providing an additional

improvement to your user's experience (the performance boost is obtained when the client's browser

caches content for fast access in subsequent requests, only when the content changes will it be

physically retrieved from the Web Server).

When Should Files be Cached?

Files should be cached when their content is stable and does not require frequent changes.

When Not to Cache Files?

Caching is not recommended for files that have constantly changing output. For example: clocks,

timers and database queries. (See Caching Alternatives to find out how to apply Partial Page Caching).

How to Activate Caching

The following procedure describes how to activate and define global caching settings. The global

caching settings determine if Caching in general will be activated or not.

Caching by default is enabled (set to "ON"). In order to view/change the setting:

1. Click the Performance tab.

2. Pick a server to configure.

3. Click the Settings tab.

The dynamic caching enabled settings status will be displayed. Next, define the default caching

settings. These settings are applied to all cached files.

To prevent unnecessary memory use, caching has to be actively applied to either a selected file or

directory.

The performance module provides three options for caching files:

 Through the File View

 Through the Performance Test Report

 Through the URL Tab

Zend Platform

121

Caching Alternatives

Web pages that contain sections that continuously change can also be cached. This partial page

caching solution can be accomplished through, applying caching APIs to portions of code that do not

change. Partial Page Caching provides an intermediate solution for providing a partial performance

boost that sustains the accuracy of changing content.

To find out more about "Partial Page Caching" go to: Partial and Preemptive Page Caching.

Note:

Dynamic Content Caching can be deactivated from Performance | Settings and changing Dynamic

Caching Enabled to Off. This will remove all Dynamic Content Caching settings from the files on the

server.

Partial Page Caching will not be affected and can be disabled by, removing the Caching APIs from

the code. The Partial Page Caching APIs will be deprecated in the next release and are

replaced by the Zend _Cache API (List of deprecated functions).

Caching using the Zend_Cache APi can be disabled by setting "caching enabled" to "Off" from the

GUI: Performance | Setting | Partial Caching section or by setting the directive: zend_cache.enabled

= 0 in the zend.ini.

Zend Platform User Guide

122

Caching with the File View

Caching can be applied to single files or do entire directories.

Go to Performance | File View and choose one of the following options:

1. Apply Caching to a single file

2. Apply Caching to an entire directory.

Specific caching settings, given to files and directories, override the main settings defined in:

Performance | Settings.

Zend Platform

123

Caching with the Performance Test Reports

The Testing tab is accessed from Performance | Testing.

Performance Test Reports provide site analysis information in terms of performance gain and

popularity. The information included in these reports provides a strong basis for evaluating if a file

should be cached.

Figure: Performance Test Report

This screen shows if a file is cached and provides an option to cache a selected file from the list.

This procedure describes how to cache files directly from the Site Analysis Report. This method of

caching is a shortcut to the file caching done in Performance | File View and the changes made here

will be automatically applied to the File View settings. The advantage of caching directly from the test

report is having the report information directly visible to assist in deciding which files should be

cached.

To Cache a file from the Site Analysis Report:

1. Go to Performance | Testing and select the Analyze Site Tab.

2. Run a performance test (or view the last performance test)

3. Go to the test results and press Edit. This will open the "Define Caching Conditions"

dialog.

The settings will be updated in Performance | File View.

Zend Platform User Guide

124

Zend Cache Extension

The Zend Cache Extension is a collection of APIs for realizing advanced partial caching capabilities.

This API complementary addition to the existing "full page caching" and "partial page caching".

The Zend Cache API extends caching capabilities to include the following functionality:

 Basic:

• Storing Variables to the Cache

• Fetching Variables to the Cache

• Deleting Variables from the Cache

• Clearing the Cache

 Advanced:

• Disk/Memory (SHM) storage

• Caching using namespaces

• Cache folder depth configuration

• Client-side caching utilization

All functions can be used to Cache using Memory or Disk.

A complete list of the Zend Cache APIs and Directives can be found in the References section.

Disk/Shared-Memory Caching

This feature provides the options to determine where to store cached variables. Memory caching

improves server responsiveness primarily in environments that are running high-traffic applications

that need to off-load activity directed towards their Hard Disk in order to help increase performance

and responsiveness. Disk caching is more suitable for smaller applications and also ensures the

cached content is available after restarting the machine.

SHM/Disk storage is implemented by using the appropriate API functions and configuring the Zend

Cache directives.

Note:

The memory option error messages have been put into place to maintain that if you run out of

allocated memory or the store operation fails you will be notified.

Example:

The following example shows the different storage options:

A simple key with no namespace stored on disk

if (zend_disk_cache_store("hello1", 1) === false){

 echo "error2\n"; exit();

}

Shared memory:

if (zend_shm_cache_store("hello1", 1) === false){

 echo "error2\n"; exit();

}

Store with namespace on disk

if (zend_disk_cache_store("ns1::hello1", 1) === false){

 echo "error2\n"; exit();

Zend Platform

125

}

Shared memory:

if (zend_shm_cache_store("ns1::hello1", 1) === false){

 echo "error2\n"; exit();

}

Store with namespace on disk with limited lifetime (3)

if (zend_disk_cache_store("ns3::test_ttl", 2, 3) === false){

 echo "error12\n"; exit();

}

Shared memory:

if (zend_shm_cache_store("ns3::test_ttl", 2, 3) === false){

 echo "error12\n"; exit();

}

'namespace' Support

Using 'namespaces' for caching provides the ability define a key that will serve as an identifier to

delete select items from the cache rather than unnecessarily removing shared instances. 'namespace'

support is intended for environments running large applications that are separated into modules.

Applying a 'namespace' to each module will provide the identification necessary to pinpoint all cached

items belonging to a given module and remove only them.

Naturally this does not mean that in order to clear the cache you will need to use the 'namespaces' as

there is still the option to clear the entire cache using the 'output_cache_remove' functions

Setting the cached 'namespace':

Cache name space could be set by adding it as a prefix to the cache with '::' as separator.

Example:

The following example shows how to manipulate variable caching using a 'namespace':

zend_cache_store("my_namespace::my_key",$data) can be fetched with

zend_cache_fetch("my_namespace::my_key"); zend_cache_clear("my_namespace") will

clear all the keys starting with "my_namespace::")

Cache Folder Depth Configuration

Defining the Cache folder depth is intended for environments that use a large amount of keys. By

definition, cached content is separated into different directories by key to prevent performance

degradation caused by accessing files containing large amounts of content. This option is only

available with Disk Caching. Increase the cache folder depth according to the quantity of content that

requires caching (small amount = 0, large quantities = 2).

Note:

A single directory may include several keys depending on the quantity of cached content.

The cache folder depth is defined by the directive: zend_cache.disk.dir_levels. The accepted values

are 0,1,2 the values represent the levels that the cached files are stored.

0 = one directory containing all the Cache files

1 = a separate directory under the Cache directory

2 = an additional sub directory for cached content under the cache directory

Zend Platform User Guide

126

ETag/"Last modified" headers support

On the first request to the server, the server sends the client 'Last-Modified' entity-header field

containing the time-stamp, that is, the time when the page was created. If the client makes a

conditional request for the content by sending an 'If-Modified-Since' header (or If-Unmodified-Since

header), when the server gets the request, one of the following occurs:

• The server validates the requests against the current validator for the entity, and if there is a

match then the cache is valid and it can be used by the client. In this case, the server

responds with a special status code 304 (Not Modified) and no entity-body - i.e. it doesn't

send the actual body. In this case, the client will use the content from the local cache.

• Otherwise, the cache has expired, and a new content is returned to the client.

Cache tag is a feature of HTTP usually implemented by proxy or reverse proxy servers, that enables

the server to identify content (page) by an identifier or tag. It uses attributes in the HTTP headers

(see detailed requirements section for more details). On the client side, this feature is supported out-

of-the-box in all modern browsers.

If the same URL is requested again, the tag is sent in the request. The server can decide whether to

send the entire content again (if it was changed for example) or to reply with an HTTP 304 response,

meaning the content is unchanged. In such case, the response does not include the body in the

content and the content is fetched from the browser's cache.

For Platform 3.5, only the HTTP Caching Validation model is to be implemented.

The Expiration Model may raise some inconsistencies when content on the server-side is updated or

'clear-cached'.

Detailed Requirements

Full information can be found at HTTP RFC 2616 Chapter 13 - Caching in HTTP: [1]

(http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html)

Basically, there are 2 models of client-side caching utilization in HTTP – Expiration Model; Validation

Model - where E-tags can be used in the latter one.

E-tag (Entity tag) response-headers are used in order to implement this functionality. It provides a

more reliable validation in situations where it is inconvenient to store modification dates. That is,

instead of working with time-stamps in the attributes mentioned above, entity tags, that are

identifiers for the server, are put for any content. E-tags are used as request validators and they are

put in one of the following header fields:

• If-Match

• If-None-Match

• If-Range

Pros: More safe on the server.

Cons: more complex to be implemented, a bit more efficient.

Zend Platform

127

File View

Contents:

Change and Define Virtual Hosts

Dynamic Content Caching

Blacklists

The File View tab is accessed from Performance | File View.

Most performance configurations are done in the File View screen. Before describing the configuration

tasks, it is important to understand the screen’s layout and functionality.

The File View screen consists of two sections:

1. The Tree View on the left displays the list of directories and provides options for filtering the

view (By status: Cached, Accelerated, Acceleration Blacklist, Compression Blacklist) the

Virtual Hosts list is also updated from here.

2. The File View on the right lists files and their status, and also includes the different caching,

acceleration and compression options that can be applied to selected files or to entire

directories.

Figure: File View - Tree View and File View Sections

Note:

Status changes made in the File View screen are immediately reflected on the screen. However, the

actual changes take affect only after manually restarting the HTTP Server. A reminder to restart

Apache, will appear on screen after changes are made and disappears only after restarting the server.

Clone Settings: To configure multiple servers or a server group with the same file settings: (1)

configure a selected server and (2) then use the Quick Clone button to propagate settings from that

server to other server nodes.

Zend Platform User Guide

128

Tree View

The Tree View on the left displays the directories available under a selected document root. All the

directories are listed by default.

The list includes filtering options to display directories by file type. To filter the list, select the file type

from the drop down list.

The filtering options are: All Files, Cached Files, Acceleration Blacklist Files, and Compression Blacklist

Files.

To refresh the list of files displayed on the right: click a directory’s name.

Tree View - Virtual Hosts List

The Tree View lists all the directories and files in the default Document Root as well as any Document

Root listed in the Vhost List. Displaying all the directories and files enables to view files included in the

Document Root directly from Zend Platform and select files for Dynamic Content Caching.

Upon initial setup it is important to verify that all the applicable Virtual Hosts are included in the

Virtual Hosts List for two distinct purposes:

1. To Benchmark test cached files. The Zend Benchmark (Performance | Testing) tests URLs per

Virtual Host.

2. To update the File View option to reflect all Virtual Host’s Document Roots.

The Tree View option maps the entire Server’s Document Roots providing a single view for displaying

all the available directories and their contained files. Adding and deleting a Virtual host should reflect

the actual Document Root activity on the server (i.e. if you add/remove a document root from the

server, you should add/remove its respective Virtual Host from the list).

Note:

The initial installation process creates a default Virtual Host list however; this may not include all the

required virtual hosts and some may need to be added/removed.

Zend Platform

129

Updating the Virtual Hosts List:

In order for Platform Performance to display files residing in a particular Document Root, you must

add the Virtual Host to the list

The Virtual Host list in the File View reflects the current Virtual Host list as defined in Manage Cluster.

You can update the list directly from the File View.

To Add or Remove a Document Root:

Go to Performance | Settings, and select Update Virtual Hosts to open the Virtual Hosts list.

Figure: Update Virtual Hosts List

This screen includes two sections:

• Update Virtual Hosts List - add a Virtual Host

• Current Settings - Remove a Virtual Host and view current virtual hosts on the

server.

Make sure that all the necessary Virtual Hosts are displayed in this list if not use "Update

Virtual Host" to modify the list as necessary.

To update the Virtual Host list:

1. Go to Performance | File View and select Update Virtual Hosts List from the options

at the top of the screen. This will open the Update Virtual Hosts List screen.

2. Specify the virtual host’s details and provide an alias for the Virtual Host under

Vhost Name.

3. Press Add to save the new Virtual Host and add it to the Virtual Hosts list.

Zend Platform User Guide

130

File View - Dynamic Content Caching

The File View displays files in a table, which can be sorted by column. The sorting options are: Status,

File Name, Lifetime and Conditions.

Once all the Virtual Hosts have been established, and the default Caching Conditions have been set;

specific Content Caching settings can be applied to selected files or directories.

Content Caching activities include the following in chronological order:

1. Define default caching settings

2. Modify file settings

3. Fine tune caching conditions

4. Define files to blacklist

Define Caching Settings:

The File View screen lists all the directories and files in the default Document Root as well as any

Document Roots listed in the "Vhost List".

Any cached file that has not been explicitly defined, automatically inherits the default cache settings

To open the File View screen, go to: Performance | File View.

Figure: File View

The File view screen provides the following Full Page Content Caching options:

 Cache - Select files to be cached and select, to enable content caching for the selected

files.

 Do not Cache - Disables Content Caching for the selected files.

 Define Cache - Displays the "Define Caching Conditions" screen to add detailed

configurations for selected files.

 Update Blacklists - Opens and modifies the current Blacklist.

 Clean - Cleans cached file copies.

 Undo - Cancels the last change to the settings.

Zend Platform

131

Modify File Settings

To Modify File Settings:

1. Select a directory in the Tree View. The list of files residing in that directory is

displayed in the File View.

2. Check the box next to the file(s) you wish to modify or the directory to select all files

(and sub-directories) under it.

3. Click on the relevant icon in the toolbar.

Fine Tune Caching Conditions

The following procedure describes how to change caching conditions per file or group of files.

To modify Caching Conditions:

1. Check the box next to the directory or cached file(s).

2. Click Define Cache to open the Define Caching Conditions Dialog. (Alternately, click

on a Cached file i.e. a file with the Cached indicator next to it).

3. Apply Caching settings and press Save to save and close the dialog.

Figure: Define Caching Conditions

Modified settings are displayed in the File View Tab next to the selected file/s. Restart the Web server

in order to activate the new caching conditions. The restart server message remains on the screen

until the server is restarted.

The Define Caching Conditions dialog includes three buttons:

 Restore Defaults - Returns to the default caching settings.

 Save - The new settings are saved and are reflected on the screen but the changes will take

effect only after restarting the server.

 Cancel - Cancels the new changes and returns to the previous settings.

Zend Platform User Guide

132

Caching conditions may also apply to Variables stored in an Array.

Note:

Go to "Default Dynamic Caching Condition Parameters" for a complete list of applicable conditions.

Note:

The zend_cache.ini file contains the list of all the files and directories assigned for Dynamic Content

Caching including all the Conditions, as follows:

Use the File View to define the files and directories to be cached.

Do not edit this file manually!

zend_cache.lifetime=360

zend_cache.depends=ALLGET

zend_cache.path="/usr/local/apache/htdocs/hello.php"

zend_cache.lifetime=360

zend_cache.depends=COOKIE:my_cookie

A large cache.ini file can possibly result in slow performance. Therefore, it is recommended to un-

cache (in the File View) any file deleted from the server.

Define files to Blacklist

The Blacklist separates acceleration and compression settings for files. With the blacklist users can

prevent files from being accelerated or compressed. Click here for more information on Blacklists.

Zend Platform

133

Change and Define Virtual Hosts

Change Virtual Hosts is accessed from Performance | File View and clicking "Update Vhosts List"

This procedure describes how to change and define virtual hosts. Virtual Hosts enable Zend Platform

users to maintain more than one server by differentiating them by host name - virtual hosts.

To update the Virtual Host list:

1. Go to Performance | File View and click "Update Virtual Hosts List" from the options

at the top of the screen.

The Update Virtual Hosts List screen opens

2. Specify the virtual host’s details and provide an alias for the Virtual Host under

Vhost Name.

3. Click "Add" to save the new Virtual Host and add it to the Virtual Hosts list.

Make sure that all the necessary Virtual Hosts are displayed in this list if not use "Update Virtual

Host"; to modify the list as necessary.

This screen includes two sections:

1. Update Virtual Hosts List - add a Virtual Host

2. Current Settings - Remove a Virtual Host and view current virtual hosts on the server.

Zend Platform User Guide

134

Dynamic Content Caching

Dynamic Content Caching is accessed from Performance | File View and clicking "Define Cache"

The concept behind Dynamic Content Caching is to store results of a first execution of a dynamically

generated Web page. In this way, further requests made to the same page, will go to the Cache.

Consequently, avoiding the overhead incurred by executing an application that renders output that

does not change.

Zend Platform offers three ways to Content Cache files:

 Full Page Content Caching - for cases where it is possible to cache an entire output.

 Partial Page Content Caching - for cases where it is impractical or impossible to cache the

entire output.

 URL based Content Caching - for cases where the URL should indicate the content for

caching.

Caching Definitions

The following definitions apply to both Caching methods. Make sure to configure Caching definitions

before starting to cache content.

Output Location

The output location for cached content (Full Page) is defined in the directive:

'zend_accelerator.output_cache_dir'.

A directory structure mirroring your directory will be added under this location and cached content will

be placed and taken from this directory. The Partial Page caching content directory will also include

additional sub directories to handle the partial content.

Partial caching's disk content cache location is defined in the directive: 'zend_cache.disk.save_path'.

Disk Space

Cache disk space limits are defined in by Performance | Settings | Dynamic Content Caching using the

following directives:

zend_accelerator.max_cached_filesize - Max cached size for content cache (Kbytes)

zend_accelerator.min_free_disk - Min disk space to leave free for content cache (in M or %)

There are two caching conditions that can be applied to files:

 Default Full Page Content Caching settings can be applied to all files marked as cached in:

Performance | Settings and going to the Dynamic Content Caching section of the settings

screen.

 Specific Full Page Content Caching configurations can be applied to specific files by going to:

Performance | File View.

Full Page Content Caching

Default Full Page Content Caching settings are applied to all files marked as cached in: Performance |

Settings and go to the Dynamic Content Caching section of the Settings screen.

Zend Platform

135

The content caching options are as follows:

 Dynamic Content Settings

 Default Caching Conditions

 Default Dynamic Caching Condition Parameters

Figure: Dynamic Content Caching Settings

Dynamic Content Settings

The lifetime and conditions settings in the Settings tab are default values. These settings can be

modified per file or per directory in the File View workspace.

Dynamic Content Caching Settings are as follows:

 Dynamic Caching Enabled - On The Dynamic Content Caching is active and working. Off -

The Dynamic Content Caching is not in use.

 Maximum Cache Size -The maximum size allocated for cache. Occasionally and for short

periods of time, this value may be exceeded but only until the next time that the Cache

Cleaner deletes the files that expired. Set to "0" for an unlimited cache size.

 Minimum Free Disk space - The minimal reserved free disk space required. Reaching this

value will end any further caching. The caching will resume as soon as the space is greater

than this value.

 Maximum Cached File Size - The maximum allowed output cache file size. An output cache

file that exceeds this value will not be cached. Set to "0" for an unlimited cache size.

 Default Cache Lifetime - The lifetime, in seconds, of cached data. The data will be re-

generated if the cached version is older than the expiration time.

Note:

The Cache Cleaner is directly related to the directive zend_accelerator.cache_cleaner_freq that can be

defined in the Configure PHP Settings screen. This directive defines when expired cache files are

removed from the cache.

Default Caching Conditions

By default, Dynamic Content Caching, caches each request based on its full URL (ALLGET). You can

condition the settings to be more general or more specific, as desired.

To change default caching conditions:

Go to Performance | Settings and go to the Dynamic Content Caching section of the settings screen.

Select, "Change Default Conditions" to open the "Define Default Caching Conditions" dialog.

Zend Platform User Guide

136

Figure: Define Caching Conditions Dialog

The default caching condition is ALLGET, which means that the entire GET string is used to identify a

cached item. The GET string includes everything that appears after the question mark in a URL. (The

ALLGET variables can be found in the $_GET PHP array as well).

The following actions and conditions can be applied to the Default Caching settings:

 To limit the ALLGET condition, select "Except" from the restrictions drop down list, to exclude

a specific GET variable from the ALLGET.

 To change the ALLGET condition, select a new condition from the drop down list.

 To add another condition, click "Add Condition" and select another condition type from the

list. Type the variables in the new condition row and restrict if necessary. The same condition

can be used several times, each time with a different restriction.

 To remove any condition, click the delete icon next to the condition you wish to cancel.

 To change the Cache Lifetime’s duration, type the new number (in seconds).

When all configurations are completed, click "Save" to save and close the dialog. Modified settings will

be immediately displayed in the Settings tab. Click "Apply Changes" and restart the Web server to

activate the new caching conditions. The message will remain on the screen until the server is actually

restarted.

Note:

Caching conditions may also apply to Variables stored in an Array.

Using Regular Expressions to Define Cache Conditions

Caching conditions can also be set using regular expressions to create conditions. Use the Match

regexp and Dismatch regexp options to define caching conditions. These can either be case-sensitive

or incase-sensitive. The regexp format is: "Unix Regular Expressions Format".

Default Dynamic Caching Condition Parameters

The following lists and describes each of the applicable parameters.

 GET - Indicates that you have selected certain GET variables. For example, consider the URL:

http://www.mysite.com/myscript.php?color=blue&size=L. When set to ALL GET, a new

request for myscript.php?color=blue&size=M, will not be taken from the cache and will be

regenerated. If, however, the setting is changed to GET, with the value ’r;color’, then the two

URL requests would both be taken from the same cache content, regardless of the order of

Zend Platform

137

the variables in the request string. (The GET variables can be found in the $_GET PHP array

as well).

 COOKIE - The Cookie variable is the variable given in the HTTP cookie. (It can be found in

PHP $_COOKIE array as well). By selecting a cookie variable, it will also be considered a

determining factor for cache hits, in the same way that GET variables are considered.

 REQUEST - The variable is set by the GET or COOKIE methods. (Can be found in PHP

$_REQUEST array as well).

 SERVER - Server variable is set as a server environment variable When selecting a server

variable, (those listed in PHP $_SERVER array) it will also be used as a determining factor for

cache hits, in the same way that GET variables are considered. To define a Server variable,

select a variable from the list or choose Add a new variable to type in another variable.

 SESSION -The SESSION variable is useful when PHP sessions are in use. (Can be found in

PHP $_SESSION array as well).

Notes:

1. If a script is cached using a SESSION variable and the session does not start in this script,

the script will not be cached.

2. If a script is cached using a SESSION variable, yet the cookies are disabled on the user

side and the SESSION ID is embedded directly into the URL, the caching will not take place.

 ALLSESSION - The script depends on all of the variables present in the session. (Can be

found in $_SESSION PHP array as well).

Note:

It is mandatory to choose at least one Dependency.

Zend Platform User Guide

138

Blacklists

Blacklists are configured from Performance | File View and clicking "Blacklist Files"

This procedure describes how to update the Blacklist. The Blacklist separates acceleration and

compression settings for files. With the blacklist users can prevent files from being accelerated or

compressed. The blacklist is accessed from: Performance | File View and pressing the Update Blacklist

Files button.

Figure: Update Blacklists Dialog

To update the Blacklist:

1. Select a file or files from the File View by clicking the check box next to the file

names.

2. Click "Update Blacklist".

This will open the Update Blacklists dialog with a list containing the selected files in

the dialog.

3. The following options can be applied to each file:

• Add a file into the Acceleration Blacklist - Check the 'Don't Accelerate' box.

• Add a file into the Compression Blacklist - Check the 'Don't Compress' box.

• Remove a file from a blacklist - Un-check the appropriate box.

• Add all the files to a blacklist - Check the appropriate box in the 'Select all' line

at the top of the files list.

Zend Platform

139

This dialog has two distinct sections:

1. Update the Blacklist - for defining blacklist criteria for selected files

2. Current Blacklisted Files - for viewing current blacklist settings

Current Blacklisted Files:

This section displays a list of files that are either not accelerated or not compressed or both. Files in

the Compression Blacklist are not compressed (whether they are cached or accelerated).

To see the files in a blacklist, click on the Expand button.

Note:

Only single files (not directories) are added to the Blacklist.

Zend Platform User Guide

140

When to Blacklist Files

There are some cases where files should be blacklisted. In general, files are blacklisted when an entire

directory except several files should not be accelerated or compressed. Another distinct instance is

when files are automatically generated or change more than twice a day. Auto generated files (like

Smarty cache) may impede performance by causing a lot of cache misses. This instance requires that

you manually blacklist the entire directory.

There are three distinct instances where files should be blacklisted:

1. Incompatible Files - some files change their behavior when accelerated due to the way

they were written such as in cases where there is a dual declaration with an else condition

using the same class names.

2. Extreme File Size - always blacklist files that are very large and contain extremely long

amounts of code as they generally consume large amounts of shared memory cancelling the

performance gain archived by the Accelerator.

3. Auto Generated Text - always blacklist files that are automatically generated or change

more than twice a day as they can cause caching problems which will influence the overall

performance. In this case, the entire directory should be blacklisted. If the directory includes

files that should be accelerated it is recommended to move them to a separate directory.

The Platform User interface does not permit blacklisting an entire directory as it works on a per-file

basis. Essentially you can in Performance | File View select a directory (by clicking the checkbox next

to file name in the file view) and then in the "Blacklist files" dialog expand the file list and select each

file to be blacklisted. However, this method is only practical for directories that have a small amount

of files. Large directories can be manually blacklisted. In cluster environments the settings can

subsequently be applied to other servers in the cluster by using the "Clone files" option.

The following procedure describes how to manually blacklist entire directories:

To Blacklist an entire directory:

1. Open and edit the file user_blacklist.ZendAccelerator.txt.

The file's location is defined in your php.ini under the directive

zend_accelerator.user_blacklist_filename and the default location is

$ZP_PREFIX/etc/cache/user_blacklist.ZendAccelerator.txt

2. Add the directories the need to be Blacklisted and make sure that only content that

is automatically generated in included in these directories so to not exclude files that

could benefit from being accelerated.

3. Save and close the file.

After completing the procedure the blacklist definitions can be applied to other servers belonging to

the cluster by clicking "Clone Files" and selecting the server/s to which you want to apply the settings.

Zend Platform

141

URLs

The URLs tab is accessed from Performance | URLs.

This procedure describes how to apply caching to content by URL. URL based caching extends the

concept of caching files and applies it to URLs. Caching by URL facilitates the ability to eliminate

situations when the same file is used in multiple instances such as when using the same file as a re-

director to several pages.

Before applying Caching settings to a URL, review the global default settings in Performance | Settings

and if necessary, modify the change the default settings before applying caching conditions to a URL.

To define URL base caching settings:

1. Go to Performance | URLs

2. Click "Add URL".

The "Add New URL Caching Conditions" dialog will open.

3. Enter the URL and configure the different settings (see below for a list of the

settings and their descriptions).

4. Click "Add Condition" to add more than one caching condition to the URL and click

"Save" to save the settings and close the dialog.

The new Caching Setting will be applied to the content for the specified URL.

This process can be repeated for different URLs only. If you have other conditions that should be

applied to a URL that is already in the list, click on the item in the list to display the settings in

editable format and apply the changes to the URL.

Caching Options

 Add URL - Opens the 'Add New URL Caching Conditions' dialog.

 Clone URL - Enabled only if one row is checked (multiple selections are not accepted). Opens

the 'Add New URL Caching Conditions' dialog, populated with the content of the selected row

in editable mode. Modifying the settings and clicking "Save" creates a new URL entry.

Clicking save without changing anything will not create a duplicate entry.

 Remove URL - Enabled only if one or more rows are checked. Used to delete an item from

the caching list.

 Cache - Enables caching on the selected URL(s) and turns the status indicator green.

 Don't Cache - Disables caching on the selected URL(s) and turns the status indicator grey.

 Define Cache - Enabled only if 1 or more rows are checked. Clicking it opens the 'Define URL

Caching Conditions' dialog to edit caching conditions for one or more selected entries

together.

 Clean - Empties the cache for the selected URLs.

 Undo - Undo previous operation.

Zend Platform User Guide

142

Add New URL Caching Conditions Options

 URL - The URL to be cached. A valid URL contains http or https and must have at least one'

/' after the host name (domain) for example:

http://example.com - not valid but, http://example.com/ - valid.

 Exact Match - This option will make sure that only the specified URL is cached and not any

other variants or URLs that contain the string. For example selecting the option "Exact Match"

for the URL 'http://example.com/categories' will ascertain that only this specific URL is

cached and nothing else. However, if the user doesn't select 'Exact Match' the URL must start

in the same prefix but can have anything after the prefix.

 Lifetime - the lifetime of the cache in seconds.

 Conditions - similar to the one used in File View Caching Conditions. The data will be re-

generated if the cached version is older than the expiration time.

Zend Platform

143

Testing

Contents:

Test URL Test Download

Additional Variables Analyze Site

The Testing tab is accessed from Performance | Testing.

The Testing workspace shows you the improvement achieved in performance by Zend Platform

Performance.

In addition, it identifies files that are prime candidates to be cached-a convenient feature during initial

configuration.

There are three tests, which you can run:

 Test URL - Tests a single script, running both the Performance and the Compression tests at

the same time. The test results indicate the script improvements achieved by Code

Acceleration, Dynamic Content Caching and File Compression.

 Test Download - Tests the efficiency of the Enterprise Server feature, Zend Download Server.

 Analyze Site - Tests performance for the entire site by running the Performance test

separately from the Compression test. The test results indicate the overall script

improvements achieved by Code Acceleration, Dynamic Content Caching and File

Compression and the popularity of each file.

All test results can be sent by e-mail to view or archive performance information.

Zend Platform User Guide

144

Test URL

The Test URL option is accessed from Performance | Testing and selecting the Test URL tab.

The following procedure describes how to test URLs. Test URL, tests a single script, running

Performance and Compression tests at the same time. The test results indicate the script

improvements achieved by Code Acceleration, Dynamic Content Caching and File Compression.

To test a URL (Benchmark Web applications):

1. Go to: Performance | Testing and select the Test URL tab.

2. Click "Test URL" and type the full path of the script. To select a previously tested

URL, click "Show History". By default, URLs are tested using GET variables defined in

the query string.

3. Click "Add variables to URL" to add the variable Name and Value to test URLs using

specific SESSION or COOKIE variables. Add the User Name and Password to test

URLs that are restricted by HTTP Authentication.

4. To delete any variable from the list, click "Delete" next to the variable.

5. To determine a test's duration, specify the time in seconds (per script) in the

"Duration of test" box.

6. Press Run.

Note:

To add specific SESSION variables to the test, make sure that your PHP is configured correctly to work

with sessions. For example: if you use 'files' as your session.save_handler, confirm that the

session.save_path is a valid path. If you use 'user' as your session.save_handler, you must prepend

the file containing the user-level session storage functions.

Test Results

The Test Results screen depicts the Dynamic Content Caching Results, the Code Acceleration Results,

and the File Compression Results:

 Dynamic Content Caching Results compare between the Base script and the script after it has

been cached, and calculates the total performance improvement accomplished due to

caching.

 Code Acceleration Results display the performance gain. If the script is cached, acceleration

does not improve performance acceleration is therefore not necessary

 File Compression Results compare between the original file size and the compressed file size

and calculates the savings in bytes and the improvement in percentage.

Additional Variables

By default, URLs are tested using GET variables defined in the query string.

 To test URLs using a specific SESSION or COOKIE variable, add the variable Name and Value.

 To test URLs restricted by HTTP Authentication, add the User Name and Password.

Zend Platform

145

Test Download

The Test Download tab is accessed from Performance | Testing | Test Download.

The Zend Download Server (ZDS) is a transparent process that runs in the background to service

large downloads. The performance gain obtained by using the ZDS is measured with the Test

Download option.

The Test Download option checks the efficiency of the Download Server. Test Download simulates

multiple requests for a specified URL with and without the ZDS, thereby creating its own benchmark

for comparison. This feature is currently not applicable for Windows Operating Systems.

To Run a Download Test:

Go to: Performance | Testing and choose the Test Download tab.

1. Enter the URL for Testing. (The default is a proprietary Zend PHP script which uses

zend_send_file() to send a file.)

Note: Testing very large files will take a very long time.

2. Enter the bandwidth limit you want to simulate for the clients (For a faster test,

select a higher bandwidth).

Note: Do not select full bandwidth; doing so will saturate your network card that

will make the test irrelevant. The test tries to simulate a typical Internet server that

has clients connected either by ISDN or DSL.

3. Enter the Max Clients value defined for your server. Insert the accurate value by

checking the MaxClients directive in the httpd.conf file.

Note: The ZDS installation tries to identify your MaxClients value via the httpd.conf

file that is the GUI’s default value, but this value can be changed after the

installation, so it is important to verify that the value listed is correct.

4. Click "Run" to run the Download Test.

Viewing Download Test Results

Once the tests have completed, you can view the test results both statistically and graphically.

To view the results of the most recent Download Test:

From the Test Download Tab click, "Show Last Download Test Report". The test report

includes tables and graphs that display the Requests per Second and Number of Concurrent

Requests for each test run.

Note:

The Download Test is a simulation. The most meaningful test results are obtained by running ZDS on

the production server and monitoring the log file to see how many concurrent jobs the ZDS is

handling.

Zend Platform User Guide

146

Analyze Site (Benchmark)

The Analyze Site tab is accessed from Performance | Testing | Analyze Site.

The following procedure describes how to benchmark Web Applications.

To Benchmark Web Applications:

Go to Performance | Testing and select the Test URL Tab.

To test a script, follow these steps:

1. Click Test URL and type the full path of the script. To select a previously tested URL,

click Show History. By default, URLs are tested using GET variables defined in the

query string.

2. Click "Add variables to URL" to add the variable Name and Value to test URLs using

specific SESSION or COOKIE variables. Add the User Name and Password to test

URLs that are restricted by HTTP Authentication.

3. To delete any variable from the list, click next the variable (To add specific SESSION

variables to the test, make sure that your PHP is configured correctly to work with

sessions. For example: if you use 'files' as your session.save_handler, confirm that

the session.save_path is a valid path. If you use 'user' as your

session.save_handler, you must prepend the file containing the user-level session

storage functions).

4. To determine the Duration of test, specify the time in seconds (per script) in the

Duration of test box.

5. Click Run.

Test Results

The Test Results screen depicts the Dynamic Content Caching Results, the Code Acceleration Results,

and the File Compression Results.

 The Dynamic Content Caching Results compares between the Base script and the script after

it has been cached, and calculates the total performance improvement accomplished due to

caching.

 The Code Acceleration Results displays the performance gain. If the script is cached,

acceleration does not improve performance acceleration is therefore not necessary.

 The File Compression Results compares between the original file size and the compressed file

size and calculates the savings in bytes and the improvement in percentage.

When running the Analyze Site test, you can choose to run the Performance test separately from the

Compression test:

 Performance Test results - indicate the average improvement achieved by Code Acceleration,

Content Caching and the average overall improvement achieved.

 Compression Test results - present the improvement accomplished due to the File

Compression.

Zend Platform

147

To Analyze a Site:

Go to: Performance | Testing and select the Analyze Site tab.

The following options are presented in the tab:

 Run Performance Test

 Run Compression Test

 Show Last Performance Test Report

 Show Last Compression Test Report

Performance Test

To run a performance test:

1. Select the number of scripts to test and press Next.

2. The following screen lists the scripts selected. To change the number of the scripts

to be tested, click "Previous". To continue, click "Next"

3. The Site Analysis Report appears indicating the Performance Gain and Popularity

Rank of the scripts.

N/A Test Results

The following procedure describes how to investigate N/A test results. N/A test results can be caused

by various reasons.

To check the cause of a N/A test result:

Place the cursor on top of the N/A and the cause of the problem appears in a Tooltip.

N/A can be caused when a script cannot be accessed or if the access time to the script is

greater than the test duration (3 sec). If this is the case, test the script separately using the

Test URL option.

After analyzing the test results you may wish to modify the caching status of the scripts and

re-run the test.

To re-run the test:

Click "Edit" next to the script you wish to modify, change the caching conditions and save the

new settings. If the message appears, the test results are incorrect since the changes you

made did not take effect. In this case, restart the server and simulate a typical user session

to get valid results.

Compression Test

The Compression test analyzes download time improvement of the popular scripts as the result of

Compression.

To run a compression test:

1. Click "Run Compression Test".

2. Choose the number of scripts to test and click "Next".

3. To ensure accurate results for the scripts, add query strings in the Script Path

entries. For example: /site/example.php?var1=value1&var2=value2).

4. Click "Run" to run the test.

Zend Platform User Guide

148

The Site Analysis Report screen details the results for the compression test. The report shows the

original script size, along with the compressed size and the compression improvement rate. The actual

compression functionality is not affected.

Note:

If one or more scripts failed the test, an indicative message appears on the screen. The Compression

Test failed since Platform Performance cannot resolve the URL from some script paths or the URL

cannot be accessed. Note that scripts defined on a virtual host or a symbolic link can cause the test to

fail.

Show Last Test Reports

The last Test Results summary is displayed in the Testing environment.

To display last Test Reports, click "Show Last Performance Test Report" or "Show Last

Compression Test Report".

The displayed Test Report will be updated as soon as you run another test.

Note:

Test results can also be sent by e-mail and stored outside Zend Platform

Zend Platform

149

Tuning

The Tuning tab is accessed from Performance | Tuning.

This tab allows users to define their Accelerator's performance level to increase PHP application

performance. Tuning helps improve performance by disabling the following features: Performance

(Caching, Acceleration and Testing), PHP Intelligence (Event collection) and Zend Guard (Obfuscation

and Licensing).

Depending on the environment some of these features may not be necessary for example: in

environments that do not deploy obfuscation and licensing the Guard features can be disabled by

using the Custom tuning level and selecting the options that disable licensing and obfuscation.

Tuning settings are applied to a selected node, the name of the server to which the changes will be

applied is displayed beneath the top navigation bar (use the "Change Server" option to select a

different server to tune).

There are four Accelerator Performance Levels:

 Normal - Preserves normal activity without disabling any functionality.

 Enhanced - Disables PHP Intelligence and Performance.

 Extreme - Disables PHP Intelligence, Performance and Guard.

 Custom - Allows to independently select which out of the six options should be disabled.

To apply Tuning Settings:

Select an option from the "Accelerator Performance Tuning Level" drop-down and press

Apply.

To view advanced options:

Click on the "Advanced Options" button to expand the list. A list of options with a detailed

description will be displayed. Use this list to also view and read the descriptions of the

options included under each tuning level.

To apply advanced options:

1. Select Custom from the "Accelerator Performance Tuning Level" drop-down.

2. Click on the "Advanced Options" button to expand the list.

3. Check the options from the list to apply then to the server.

Zend Platform User Guide

150

Accelerator Performance Level Descriptions

Enhanced Accelerator performance tuning level

Applying this Accelerator performance tuning level impacts the following features:

 PHP Intelligence - New events will not be collected.

 Performance - File timestamps, consistency checksums and script timing will not be checked.

Therefore, Accelerator tests will be disabled, and the Accelerator cache will not be refreshed.

Extreme Accelerator performance tuning level

Note:

This Accelerator performance tuning level would, in some cases, cause your environment to become

unstable and even in-operable.

Applying this Accelerator performance tuning level impacts the following features:

 PHP Intelligence - New events will not be collected.

 Performance - File timestamps, consistency checksums and script timing will not be checked.

Therefore, Accelerator tests will be disabled, and the Accelerator cache will not be refreshed.

 Guard - Obfuscated pages will become inaccessible along with files using Guard licenses.

Tuning Performance in i5 OS

The following procedure describes the actions that need to be performed to tune Zend Platform for

Optimal performance on i5/OS.

To tune performance, make sure that:

 Zend Optimizer 3.3.2 or above is installed. This version is available as part of the Zend Core

2.5 package or as an update for Core 2.0.X. (Download Zend Core for free from:

http://www.zend.com/downloads)

 The directive 'zend_optimizer.disable_licensing' is set to '1'

(zend_optimizer.disable_licensing=1) in Configuration | PHP Configuration.

Note: when set to Off, all code using Zend Guard Licenses will not be executable.

 The directive 'zend_accelerator.use_cwd' is set to '0'

(zend_accelerator.use_cwd=0) in Configuration | PHP Configuration.

Important Note:

When set to Off (0), performance will be increased however, some existing applications including Zend

Core and the Zend Platform Administration Console will not be available.

 All modules are loaded and enabled. These by default are loaded and enabled out-of-the-box.

Check to see they are loaded through the PHP Info tab (Configuration | PHP Info) or go to the

Configuration tab to load the modules (Configuration | PHP Configuration). The modules are:

Debugger, Download Server, Optimizer and Platform.

 The Job Queues and Java Bridge daemons have been stopped. This is critical for weaker

machines. To disable the daemons, Go to the i5/OS command line and type "go

zendplat/zpmenu" Select the "Stop service menu" (option 2 ZPSTOP) and select the

options:

• 3 - Stop JavaMW server

http://www.zend.com/downloads

Zend Platform

151

• 6 - Stop Job Queue Daemon

 Set the Tuning Settings to Extreme (Performance | Tuning).

This will deactivate all non-critical functionality as follows:

• zend_accelerator.validate_timestamps=0

Notes:

- Not needed for PHP 5.2.x

- When set to Off all changes to existing files require that you restart the Accelerator using

'accelerator_reset' to reset the contents of the Accelerator cache (or go to the section titled,

Code Acceleration).

• zend_accelerator.consistency_checks=0

• zend_accelerator.perform_timings=0

Note: When set to Off, Platform stops collecting acceleration info making the results in the

option: Performance | Testing | Analyze Site incomplete.

• zend_optimizer.obfuscation_level_support=0

Note: when set to Off, all code obfuscated with Zend Guard will not be executable.

Note:

Performance tuning is set to Extreme by default since version 3.0.3a.

Zend Platform User Guide

152

Zend Optimizer

The Optimizer is a passive performance component that runs within the Platform Framework and

automatically optimizes scripts. Optimizer is also designed to detect and load files encoded with the

Encoder.

Note:

The Zend Optimizer’s default setting is 'On' which means the Optimizer will start to run as soon as

Platform is installed. The Optimizer component does not require any additional configurations.

If you do not plan to use the Optimizer to load encoded files, you can slightly improve the Optimizer’s

performance by adding the zend_optimizer.enable_loader = 0. This disables the transparent auto-

loading mechanism that is built into the Zend Optimizer.

To change zend_optimizer.enable_loader settings:

Go to Configuration | Configure PHP Settings and choose from the list of directives Zend |

Optimizer.

Zend Platform

153

Configuration Tab
Contents:

Studio Settings Debugger Tunneling Port Limits

Configuring Preferences for Tunneling PHP Configuration

Configuring Tunneling with Studio PHP Info

On Demand Connection Clone Wizard

Users are prompted to select a node before entering the configuration options tab. All configurations

are applied to the selected node. In addition, the top bars of screens indicate the name of the node.

The Quick Clone option in the Settings and PHP Configuration tab provides a shortcut to propagating

changes done in these tabs to other nodes.

This section includes the following options:

 Server

 PHP Configuration

 PHP Info

Zend Platform User Guide

154

Studio Settings

The Studio Settings tab is accessed from Configuration | Studio.

Studio is Platform’s embedded integration with Studio's debugger. The Studio component is part of

the Platform node installation, ensuring that an instance of the debugger resides on every node.

Studio settings provide a way for allowing or denying accessibility to a selected server or to a

selection of servers (using a Net Mask which implements Wildcards on IP addresses).

Figure: Studio Server Settings

The Studio Settings screen displays the Studio settings for the selected node (The server is selected in

the server tree).

There are four settings categories:

 Allowed Hosts - These are the hosts that are allowed to initiate debugging and profiling

sessions.

 Denied Hosts - These are the hosts that are not allowed to initiate debugging and profiling

sessions, even if they are on the Allowed Hosts list.

Zend Platform

155

 Allowed Hosts for Tunneling - These are the hosts that are allowed to use this node for

tunneling. The Zend Studio Tunnel is used for debugging PHP code across a Firewall to use

the integration with the Zend Studio. Note: Tunneling is not supported in Windows.

 Other Settings - These are additional settings supported by Platform. Currently, "Expose

Remotely" is the only setting in this category. This setting determines whether the Debug

Server will expose itself to remote clients. This is required if you want the Zend Studio

Browser" toolbar to automatically detect pages that can be debugged.

The Settings screen is for Adding, Editing or Removing a host from the Allowed Hosts, Denied Hosts,

or Allowed Hosts for Tunneling categories. You can also assign a value (Always, Selective, or Never) to

the Expose Remotely setting for the selected node.

"Expose Remotely" settings:

 Always - Will expose all hosts

 Selective - Only exposes the hosts in the allowed host list

 Never - Will not expose any host

To access the Studio Server tab:

1. Go to Configuration |Studio.

2. From the Server Tree, select the server you wish to configure (or whose settings

you wish to view).

3. Click "Select "to open the Studio Server tab for the selected node.

To change or add a host to allow or deny tunneling:

1. Go to Configuration | Studio.

2. Click "Add" - for example, in the Allowed Hosts category to open the Add New

Allowed Host dialog box opens.

3. Enter the Settings for the new Allowed Host.

4. Click "Apply" - A new Host will appear in the Allowed Hosts category on the Server

Settings screen.

5. To edit or remove a Host - for example, in the Allowed Hosts category, click "Edit"

or" Remove" (To the right of the Server Host you wish to edit).

You will be prompted to confirm your new settings click "Save" to save the settings to the database.

To set the Expose Remotely setting for the selected node, select a value, Always, Selective, or Never,

from the drop-down list provided and click save.

Net Masks:

The Net Mask option is used to define a string of IP addresses using wildcards * to specify the range

of IPs that are either allowed or denied hosts. This option, allows to specify a range of IPs from 0-255

according to the selected amount of wildcards for example if you choose to use the Net Mask option to

deny the following IPs: 24 (10.1.3. *) all IP addresses beginning with 10.1.3 will be denied access to

the Studio Server (i.e. Integration with Studio will not be permitted for these IP addresses).

Zend Platform User Guide

156

Tunneling (Communication Settings)

Communication with Studio facilitates the integration that combines Platform’s event reporting

capabilities with Studio’s editing, debugging and profiling features.

This integration provides an efficient way for managing the different stages of the development life-

cycle. Platform’s PHP Intelligence inspects performance and Studio debugs, profiles and provides a

means for resolving issues and deploying changes.

There are two modes of communication with Zend Studio that accommodate different

requirements:

 Tunneling (*Auto Detect Mode) - creates a secure communication tunnel with Studio that

keeps a persistent connection with the designated communication port. This mode of

communication is the recommended mode of communication. It is also responsible for

solving communication problems that arise when Studio is behind a security devices such as

a Firewall or NAT.

 On-Demand Communication - creates a connection on demand. Selecting to edit, debug or

profile code opens a connection that is closed once the action is completed. This requires

defining the port and IP for direct communication with Studio.

*This feature is currently not applicable for Windows Operating Systems.

Choosing a mode of communication depends on how your environment is set-up. If there are security

devices and there is no limitation to keeping a persistent connection, use the Tunneling option - the

preferred mode of communication. However, if for some reason it is not possible to keep the port

connection open at all times, use the On-Demand Communication option, this option should be used

when Platform and Studio are not separated by any security mediation devices.

To Setup the Integration with the Studio, there are several tasks that need to be performed

(depending on the type of connection you want to establish):

 Configuring Preferences for Tunneling

 Configuring Tunneling with Studio

 On Demand Connection

 Studio Settings

 Debugger Tunneling Port Limits

Zend Platform

157

Configuring Preferences for Tunneling

This persistent connection operates even when separated by a Firewall. The advantage of this method

is that it is possible to use the Studio Integration on several nodes at once. For example, to debug an

entire cluster of machines behind a load-balancer using only a single debugger connection to

Platform's Studio Server component.

The technology is based on two functional elements:

 The Studio that includes an internal Web server that listens on the local host on a specific

Auto Detection port.

 Platform auto-evaluates Studio’s Auto Detection port, by evaluating Studio’s settings. These

are the Tunnel Settings defined in Platform.

To establish a communication tunnel between Platform and Studio:

Go to: Platform | Preferences.

Figure: Communication Tunnel Method

In the Platform Settings section, enable Auto detect the Studio Settings by clicking On.

This informs Platform of the method of connection to Studio. The relevant options/fields for

configuring Tunneling are as described below:

 Auto Detection Port - Indicates that Studio will listen to the local host on the signified Auto

Detection port - Default=20080. Leave empty to automatically identify the IP from the

browser.

 Test - Verifies if Studio is listening to this port. This test should only be run when Studio is

running.

 Method of passing the Studio Server parameters - Defines the means for passing

communication parameters from the Platform to Studio. Choose COOKIE or GET method.

Configure communication as follows:

1. Use the "Test" option to verify that Studio’s Broadcast Port is set to the same port

number as Platform’s Auto Detection Port.

2. Select a method of passing Zend Studio parameters.

3. Click "Save".

Note:

The default method is Cookie, and it is recommended that you use the default. Platform supports a

Get method as well that can be used if experiencing problems with Cookies.

Zend Platform User Guide

158

Platform establishes a communication tunnel with Studio based on the default detection port.

Note:

Tunneling to Debug and Profile code with the Studio is only possible if Studio is open and running and

Studio’s Tunneling settings are properly configured in Platform and Studio.

Zend Platform

159

Configuring Tunneling with Studio

This procedure describes how Platform users can configure the Studio side to connect with Platform

using a Communication Tunnel. Communication tunnels are used to circumvent Firewalls and other

security devices to enable the use of Platform's advanced diagnostics options. These options include

editing, debugging and profiling Event source code using Studio.

Tunneling is used for editing PHP code with Studio in instances when the code and the IDE are located

on different machines separated by a Firewall.

The following instructions pertain to the following IDEs:

Studio for Eclipse 6.0

Studio 5.5

Note:

The Debug port for Studio 5.5 is 10000 and in Studio for Eclipse 10137.

Studio for Eclipse 6.0

There are several steps to defining Tunneling in Studio for Eclipse as follows:

1. Define a server

2. Configure Server Preferences

3. Configure Platform Integration

4. Set Tunneling Settings

To configure Tunneling Settings for Studio for Eclipse:

1. Open the PHP Server Preferences dialog from the shortcut menu by clicking

or from the main menu: Window | Preferences | PHP |PHP Servers.

2. Click New to define a New Server (or Edit if the server has already been defined).

3. Give the server a unique name and enter the URL of the server on which Platform is

installed.

Click Next to continue or go to the next Tab.

4. You can ignore the Path Mapping option. Before running a Debugging or Profiling

session you will be automatically prompted to define path mapping. Read more

about Path Mapping in the Studio for Eclipse Help.

Click Next to continue or go to the next Tab.

5. In the Platform Integration dialog, check the option "Enable Platform

Integration".

6. In the Platform GUI section keep the option Use Default and the "/ZendPlatform"

suffix - this information is used to locate Platform

7. In the Authentication section enter your Platform User Name and Password.

Click Next to continue or go to the next Tab.

8. In the Tunneling Settings section, check the option "Enable Tunneling"

9. Specify your "Return Host" which should be the IP address of the machine on

which Studio is installed (if the response should be sent to the same machine you

can leave this option empty).

10. Configure your Authentication Information - Use this option when working with a

Zend Platform User Guide

160

Web server that requires HTTP authentication. Zend Studio sends the authentication

information in the header.

Note: This assumes the user account is set up on the Web server

Click Finish or OK.

11. Activate Tunneling to a server by clicking the Tunneling icon .

The statuses are; Green - connected and Red - disconnected. To know which server

is connected click on the arrow next to the icon to display the mane of the server.

Now when clicking the Event Details options: Reproduce in Debugger and Reproduce in

Profiler, a Studio Session will be initiated.

When debugging and profiling make sure you are in the correct perspective or that you

confirm the perspective switch in Studio Eclipse otherwise the session will not start.

Note:

To start a Debug Session click the Resume button in Studio Eclipse's Debug perspective.

Useful Information:

1. Information in Studio's Debug Preferences, must match the information in Studio’s Tunneling

Settings for tunneling to work.

2. Several Tunneling sessions can be configured. Therefore, If the debug session is not working,

check to see that the Tunnel to the correct server is connected.

To do so in Studio Eclipse, click on the drop-down arrow next to the Tunneling Icon

and verify that the name of the server is correct.

3. If running a session times-out, make sure the "Client Host ID" is defined in Preferences |

PHP | Debug. This will direct the response to a single address.

Debug Preferences

To view debug preferences to ensure that the information is suits the Tunneling Preferences go in

Studio for Eclipse to: Window | Preferences | PHP | Debug:

Zend Platform

161

Figure: Studio for Eclipse Debug Preferences

In the section called "Connection to debug server", make sure the following settings are

configured:

Debug Options:

 PHP Debugger - Defines the component for running the debug session. The integration with

Platform works with the Zend Debugger only.

 Default Server - Defines which server the debugger will use by default. Click the "PHP

Servers" category to be taken to the PHP Servers management page.

Set this to Zend Platform

 Default PHP Executable - the required PHP version. Select the version which Platform is

using.

 Debug Transfer Encoding - Click the arrow to select the required transfer encoding from

the drop-down list.

 Debug Output Encoding - Click the arrow to select the required output encoding from the

drop-down list.

 Break at First Line - Mark this checkbox to force the debugging process to stop at the first

line of code.

 Client Host/IP - Enter the Client's Host/IP.

Zend Platform User Guide

162

Studio 5.5

To configure Tunneling Settings for Studio:

1. Open the Tunneling dialog: Tools | Tunneling Settings:

2. Define values for the following settings:

• Tunnel Target Host - Address of the Web server on which the debugger

resides.

• Tunnel Target Port - Port of the Web server on which the debugger resides

the default port is 80.

• Specify Return Host - When enabled, this should contain the address of the

server on which Studio resides.

• Automatically Connect on Startup - Enables the communication tunnel

when Zend Studio starts up.

• HTTP Authentication - Tunneling supports HTTP authentication. This enables

users to send HTTP authentication information (user name, password) together

with the header sent to the server. Therefore, you can specify that tunneling to

a server will require authentication, and improve security by adding information

in the following fields:

o Send Authentication Information - Use this option when working with a

Web server that requires HTTP authentication. Zend Studio sends the

authentication information in the header.

Note: This assumes the user account is set up on the Web server.

o User Name - User name as defined on the Web server.

o Password - User password as defined on the Web server. Note: Whenever

you use the debugger, the server will use the User Name and Password

specified here.

3. Click "Connect" for Studio to connect to the Tunnel Target Host over the specified

port.

Note:

Information in Studio's Debug Preferences, must match the information in Studio’s Tunneling Settings

for tunneling to work.

Zend Platform

163

Debug Preferences

To view debug preferences to ensure that the information is suits the Tunneling Preferences go in

Studio to: Tools | Preferences | Debug:

Figure: Studio Debug Preferences

In the section called "Connection to debug server", make sure the following settings are

configured:

 Debug Mode - Sets the Debugger to Internal or Remote.

Select remote for integrating with Platform

 Debugger Server URL - The IP or URL of the host that runs the Debug Server. To check the

connection to the debug server, select the Check Debug Server Connection, from the Debug

menu.

If the test fails, check the list of common problems in Appendix A - Troubleshooting Zend

Platform

 Client IP - Set the IP address of Studio’s host machine.

 Client Debug Port - Set the port number for communication with the Debug Server.

 Broadcasting Port - Studio’s communication tunnel is implemented via a persistent

broadcasting port that broadcasts information about tunneling to Platform. Specify the port

number in this field.

Zend Platform User Guide

164

 Dummy File - This file used during the debug process for storing interim information.

 Server Response Timeout - The amount of time allowed for a server response. If no

response is received within this time, a notification will be generated to inform you that the

Server is not responding.

 Encrypt Communications using SSL - To enable SSL encryption make sure this option is

selected here and in Platform’s Dashboard | Preferences.

Zend Platform

165

On Demand Connection

Platform supports on demand communication with Studio.

This method should be used if your organization’s security policies do not permit persistent

connections.

To enable on-demand communication between Platform and Studio disable the Auto

Detect function as follows:

1. In the Platform Settings section, disable Auto detect the Studio Settings by clicking

Off.

2. The Debug Studio Port and Studio IP fields become active.

3. Enter the Debug Studio Port and Studio IP address in the fields provided. Manually

enter the Port and IP Address for Studio - Default Port=10000. The default address

is auto-evaluated from the browser.

4. Click "Save".

Figure: On-Demand Communication Settings

Note:

The Studio debug port is the port number with which the Studio communicates with Zend's Debug

Server (Platform); this field is active only if Auto Detect is disabled (Off). The Zend Studio IP uses the

default IP as the address for communicating with Studio (The IP assigned to the Studio host machine;

if the value is not correct, enter Studio's correct IP address).

Zend Platform User Guide

166

Debugger Tunneling Port Limits

To ensure persistent connections while using Tunneling over firewalls for debugging event information

in Platform or debugging scripts edited in Studio, you can modify the following php.ini directives that

define a port range.

The directives are:

 'zend_debugger.tunnel_min_port'

Description: Minimal possible value of Debugger tunneling port

Default value: 1024

 'zend_debugger.tunnel_max_port'

Description: Maximal possible value of Debugger tunneling port

Default value: 65535

Note:

The Debugger uses the default values either when the directives are not present in the php ini, or if

one of them is invalid. If the directives are not present, the Debugger will revert to random port

allocation and not from a predefined range of ports.

These directives define a port range for Tunneling. While Tunneling, the Debugger will try to locate a

free port starting from the minimum value defined in the directive 'zend_debugger.tunnel_min_port' ,

but not above the maximal value defined in the directive 'zend_debugger.tunnel_max_port'. Another

consideration when defining a port range is, to ensure the amount of ports opened correspond to the

amount of possible debugger connections that may occur i.e. the range should reflect the amount of

Studio’s you have in your organization.

In parallel, the System Administrator must ensure the proper firewall policies [rules] are set to allow

communication via the selected ports, in order for the tunneling to work.

The tunnel server, and not the debugger, uses these tunnel settings. The debugger will still use

random ports for debugging.

Possible Error Message:

"Could not find a free TCP port for tunneling. Please re-adjust the 'zend_debugger.tunnel_min_port'

and 'zend_debugger.tunnel_max_port' directives in the php.ini file."

This means the Debugger could not find a free port to establish a communication tunnel, make sure

you have defined an adequate port range in the directives. If the problem persists, consider checking

the firewall policies.

Zend Platform

167

PHP Configuration

The PHP Settings screen is the configuration tool for customizing PHP and Zend products, by

modifying directives and extensions in the php.ini and zend.ini files.

Configuration options are separated by type (Directives and Extensions) in expandable lists. The [+/-]

signs indicate if there are more options related to that list item or not.

Clicking on the Plus Icon [+] will expand the lists to expose the different options and where

applicable, input fields are added to change an option's value. Alternatively, clicking the Minus Icon [-]

will contract the list leaving only the option type visible.

The content of these lists is based on the exact content of the php.ini on the selected server.

Changing directives in this section will change the server's php.ini settings.

Changes to Zend Product directives (Platform; Optimizer, Monitor, Debugger, etc.) are applied to the

zend.ini or the php.ini according to their origin.

Some directives do not require restarting the server. An indication will be given regarding which

directives require restart and which changes will be automatically applied. (See the Reference section

for a complete list of directives and their settings)

Note:

Most of the directives can be viewed and modified. Directives that should not be changed under any

circumstances are disabled (grayed out). Directives that are commented in the php.ini are only viewed

in the PHP Configuration screen when the comment is removed. As an added precaution, changes that

will be done to the php.ini will require entering your php.ini password, as defined in the

'zend_gui_password' directive (the password is MD5'ed). To change the password go to: Dashboard |

Preferences.

PHP Settings can be configured per Server (Node) and subsequently be applied to other servers using

the "Clone Wizard".

Finding a Directive/Extension

Search for a directive or an extension by using the "Quick Filter" field. The "Quick Filter" allows to

search for a directive or an extension that contains a certain word or combination of letters in its

name or description.

To find a Directive or extension:

Go to Configuration | PHP Configuration and enter the directive into the Quick Filter Field.

Configuring Settings for a Server (Node)

To configure Settings:

1. Go to Configuration | PHP Configuration or use the shortcut from Platform |

Dashboard | Configure PHP Settings. (To configure multiple servers or a server

group with the same PHP Settings, first configure a selected server and then run the

Clone Wizard to propagate settings from that server to other server nodes.

2. Use the + symbol to select and expand the PHP entry you wish to edit or use the

"Quick Filter" to search for a directive or an extension that contains a certain word

or combination of letters in its name or description.

In both cases the expanded line will open with an active field for editing directive’s

Zend Platform User Guide

168

parameters.

3. In the Value column, enter a new setting in the editable field provided.

Changed setting's backgrounds will automatically change to a darker shade of blue

indicating that it has been modified and will stay that way until the "Save Settings"

button is clicked.

4. Click "Save Settings".

The new settings will be registered to the php.ini configuration file (you may be

asked for your php.ini password for critical changes).

Note:

 Use the "Clone Wizard" if you want to apply these changes to nodes belonging to a cluster.

Zend Platform

169

Figure: PHP Configuration

Zend Platform User Guide

170

PHP Info

The php Info screen is a read-only screen that outputs a large amount of information about the

current state of PHP. This includes information about PHP compilation options and extensions, the PHP

version, server information and environment, the PHP environment, OS version information, paths,

master and local values of configuration options, HTTP headers, and the PHP License.

Note:

The values displayed in the php.info page may differ from the system-wide settings as they display

the "Local View". To see the system-wide settings check the "master value" column.

Zend Platform

171

Clone Wizard

This option is available from select tabs and from Configuration | Clone Wizard.

The following procedure describes how to Clone settings defined on one server to other servers. Once

all settings have been configured on a node, the Clone Settings feature allows for applying these

settings to the different nodes in one single process.

This option is only available in tabs that require the ability to transfer configured settings to other

server/s.

To clone configurations:

1. Wherever the option is available Click "Clone ... ".

The Clone wizard dialog opens after selecting a source server.

2. Use "View Tree By field" to quickly find the source server.

3. Select the Source Server, i.e. the server whose configuration settings you wish to

distribute to other servers in the network. the selection is done from the list of

servers in the tree display.

4. Click "Next" to open the Configuration Selection screen.

Note:

The Configuration Selection screen is a collapsible list of configuration parameters to be

taken from the source server that was selected. Only selected parameters are cloned. By

default, all configuration parameters are de-selected.

5. Select the PHP configuration, Zend products settings or entire Configuration file (of

the Zend products) for the source server with the settings you wish to clone.

6. Select additional configuration parameters you wish to clone.

7. Click "Next", to select the destination server or servers.

8. In View Tree By field, select the tree view you wish to use to find the destination

server quickly.

9. Select the Destination Server(s) - i.e. the server(s) with the configuration settings

that you wish to change to match parameters selected from the source server (from

the list of servers in the tree display).

10. Click "Clone".

The Clone Wizard distributes the selected parameters from the source server to the destination

server(s). A Broadcast Summary screen appears indicating that the configuration settings have been

cloned to the selected destination servers.

Zend Platform User Guide

172

Web Services
Contents:

System Requirements Add/Remove Server Actions

General Tasks Event Handling

Get/Set Actions Using Web Services

Web services are a standardized way of allowing applications to interface and share data across the

network. Web service messages are written in XML, to facilitate communication between different

applications in different programming languages.

Platform provides an API that extends Platform's functionality making it accessible via Web Services.

Users will be able to get information and perform several tasks as follows:

 General Tasks - Login to the server and get information about the servers and services in

your environment.

 Get/Set Actions - View and change directives.

 Add/Remove Server Actions - Add or Modify allowed host settings or remove hosts. These

actions can be applied to nodes or server groups (clusters).

 Event Handling - Get Event information and Change Event Statuses.

Note:

Most of the functions check to see if the user is already logged-in to the system. Therefore, before

calling a function call the login() function with the correct user information (user name and password).

System Requirements

In order to run Web Services in your environment. Please make sure you have the following:

 PHP 5

 SOAP extension

 You must have the following zend.ini entry - zend_central.web_services.enabled=1 (this

setting is set by the installer when choosing to use Web Services in the installation process).

Zend Platform

173

General Tasks

ServiceResponse login

ServiceResponse login(username, password)

 Description: Used to login to the system with your given user name and password (the

same user name used in order to log into Platform Administration).

 Return Values: ServiceResponse

 Parameters:

string $username: Username to use for login. Same user name used in order to log into

Platform Administration.

string $password: Password use for authenticating the user name.

Important Note:

This function must be called before calling any other function that needs the user to be logged in.

ServiceResponse getServers()

ServiceResponse getServers()

 Description: Get a list of servers.

 Return Values: Returns a response object that will hold a list of all the clusters (and a list of

their servers) and un-clustered servers (The term 'cluster' means a group of aggregated

servers).

 Parameters: None

Example:

cluster1 => server1

server2

server5

cluster2 => server3

server6

server4 => null <- unclustered server

server7 => null <- unclustered server

ServiceResponse getVersion()

ServiceResponse getVersion()

 Description: Get the Web Service version to know what functionality it supports or not.

(This function does not require login)

 Return Values: Returns a response object with the web service version.

 Parameters: None

Zend Platform User Guide

174

Get/Set Actions

getAllDirectives

DirectiveServiceResponse getAllDirectives(server)

 Description: Gets information about directives on a given server.

 Return Values: Returns an object containing all the directives read from the given server

name and their relevant data (name, current value, loaded value, INI file the directive was

read from).

 Parameters: string $server: Server alias of the server you would like to get directives from

getDirective

DirectiveServiceResponse getDirective(server, name)

 Description: Gets the desired directive name and the server from which the directive value

will be read.

 Return Values: Returns a response object holding the following information: directive name

current value, loaded value, name of INI file the directive was read from.

 Parameters: string $server: Server alias of the server you would like to get directives from

string $name: Directive name

setDirectiveOnServer

ServiceResponse setDirectiveOnServer(server, name, value, ini_file, password)

 Description: Sets a new value for the given directive on the specified server. The user must

specify the ini file this directive will be set in. The Password is only needed if the ini_file is

php.ini.

 Return Values: None

 Parameters: string $name: Directive name to set

string $value: New directive value

string $ini_file: Name of INI file to save the directive in

string $server: Server alias of the server you would like to set directives on

string $password: Password for INI modifier (required only if INI file is php.ini)

setDirectiveOnCluster

ServiceResponse setDirectiveOnCluster(cluster, name, value, ini_file, password)

 Description: Sets a new value for the given directive on all the servers belonging to the

given cluster. The Password is only needed if the ini_file is php.ini. (assuming all servers in

cluster use same password).

 Parameters: string $cluster: Server Group name

string $name: Directive name

string $value: Directive Value

string $ini_file: Name if INI file to use in order to set the directive

string $password: Password for INI modifier (required only if INI file is php.ini)

Zend Platform

175

Add/Remove Server Actions

addAllowedHostOnServer

ServiceResponse addAllowedHostOnServer(server, host_ip)

 Description: Adds the given IP to the list of allowed hosts on the given server.

 Parameters:

string $server: Name of the server on which to allow the host's IP.

string $host_ip: Host IP to allow

addAllowedHostOnCluster

ServiceResponse addAllowedHostOnCluster(cluster, host_ip)

 Description: Adds the given host IP to the allow_hosts directive in the zend.ini file (if it's not

already there), on all servers in the given cluster

 Parameters:

string $cluster: Name of the server group on which to allow the host's IP.

string $host_ip: Host IP to allow

removeAllowedHostOnServer

ServiceResponse removeAllowedHostOnServer(server, host_ip)

 Description: Removes the given IP from the list of allowed hosts on the given server by

adding it to the denied hosts list.

 Parameters:

string $server: Name of the server on which to deny the host's IP.

string $host_ip: Host IP to deny

removeAllowedHostOnCluster

ServiceResponse removeAllowedHostOnCluster(cluster, host_ip)

 Description: Removes the given IP from the list of allowed hosts on all the servers on the

given cluster by adding it to the denied hosts list.

 Parameters:

string $cluster: Name of the group we want to deny the host's IP access.

string $host_ip: Host IP to deny

isHostAllowed

ServiceResponse isHostAllowed(server, host_ip)

 Description: Checks if the given IP is in the allowed list on the given server.

 Parameters:

string $server: Name of server to check if the host IP is allowed or not string $host_ip: Host

IP to check

Zend Platform User Guide

176

Event Handling

getAllEvents

EventServiceResponse getAllEvents(filter, offset, number_of_rows,sort_by,desc_order)

 Description: Gets a list of Events along with a short version of the Event Details. It is also

possible to get a range of event rows by specifying an offset and number of rows from that

offset.

 Parameters:

array $filter_array: Associated array where the key is the filter name and the value is the

filter value integer $offset:

integer $number_of_rows: Number of events to get

string $sort_by: Value to sort by

$desc_order: Ascending order (false) or descending order (true). Default is descending order.

getTotalNumberOfEvents

ServiceResponse getTotalNumberOfEvents(filter)

 Description: Shows the total number of events according to the given filter. This function

should be used along with the getAllEvents() function in order to get the total number of

events matching a given filter and show these events by pages

 Parameters:

array $filter_array: Associated array where the key is the filter name and the value is the

filter value.

getEventData

EventServiceResponse getEventData(event_id)

 Description: Gets a specific event ID and returns all data available for the given event.

 Parameters:

integer $event_id: The ID of the event you would like to get

getEventFilterNames

ServiceResponse getEventFilterNames()

 Description:

 Return Values: Returns a list (array inside a ServiceResponse) of all available filter names

that can be used with the getAllEvents() function.

 Parameters: None

getEventFilterAvailableOptions

ServiceResponse getEventFilterAvailableOptions($filter_name)

 Description:

 Return Values: Returns all the possible options that the given filter name can accept (filter

name is one of the elements returned by the getEventFilterNames() function.

 Parameters: string $filter_name:

Zend Platform

177

getEventSortOptions

ServiceResponse getEventSortOptions()

 Description:

 Return Values: Returns all the possible sort options for events

 Parameters:

debugEvent

ServiceResponse debugEvent(event_id)

 Description: Starts a debug session while recreating the exact conditions that resulted in

this event (same as the 'Debug' button in the 'Event Details' page).

(This option works with Studio)

 Return Values: Will start a debug session

 Parameters:

integer $event_id: The ID of the event you would like to debug.

profileEvent

ServiceResponse profileEvent(event_id)

 Description: Profiles the script that originated the given event (same as the 'Profile' button

in the 'Event Details' page).

 Return Values: Will start profile session

 Parameters:

integer $event_id: The ID of the event you would like to profile

deleteEvent

ServiceResponse deleteEvent(event_id)

 Description: Use this function to remove events from the Database (same as the 'Delete'

button in the 'Event Details' page).

 Parameters:

integer $event_id: The ID of the event you would like to delete.

ignoreEvent

ServiceResponse ignoreEvent(event_id)

 Description: Changes the Event's status to Ignored (same as the 'Ignore' button in the

'Event Details' page).

 Parameters:

Integer $event_id: The ID of the event you would like to set as 'ignored'

closeEvent

ServiceResponse closeEvent(event_id)

 Description: Changes the Event's status to Closed (same as the 'Close' button in the 'Event

Details' page).

 Parameters:

integer $event_id: The ID of the event you would like to set as closed

Zend Platform User Guide

178

preserveEvent

ServiceResponse preserveEvent(event_id)

 Description: Sets the Event's status to Preserved (same as the 'Preserve' checkbox in the

'Event Details' page).

 Parameters:

integer $event_id: The ID of the event you would like to set to be preserved

unpreserveEvent

ServiceResponse unpreserveEvent(event_id)

 Description: Changes the status of a preserved so that it will be deleted in the next

periodical Database cleanup.

 Parameters:

integer $event_id: The ID of the event you would like to set to be un-preserved.

Zend Platform

179

Using Web Services

Web Services are a method for directly communicating with Platform.

There are two methods for using the Web Services API.

The first method is called "Non WSDL Mode". This method directly uses the API without referencing a

WSDL file. This is done by using the API functions as described in "Web Services API" and connecting

via SOAP to a server to start calling the functions.

The second method is called "WSDL Mode". This method allows referencing a file that contains the API

and its options in order to use the functionality or automate communication using Web Services. This

file is in XML format so that it can be easily read by without knowing the API. A description and

example of using this method is included below.

The following procedure describes how to reference a WSDL file (using the second method "WSDL

Mode") to define communication with Platform. This procedure also demonstrates how to gain Code

Completion for the WSDL file using Studio.

In order to perform this procedure you must have the following: Platform, Studio (4 or above, Eclipse

or PDT) and you must know the location of the WSDL file (commonly located in: <doc-

root>/ZendPlatform/server/PlatformWS.wsdl

To reference the WSDL file:

1. Open Studio

2. Create a new SOAP client and reference the WSDL file:

$soap = new SoapClient('http://gollum/ZendPlatform/server/PlatformWS.wsdl');

3. If the server requires login information add that after referencing the WSDL file:

$soap->login('Admin','zend');

4. The code completion will be activated, making all the functions available to you

including a description parameters and return values of the API's functions.

5. Enter the command you require.

6. Save the file and run it from your browser to get the results.

The following Example shows how to create a query for displaying event data collected by Platform.

This type of query can be imported into a third party application for example; The Zend development

team uses this method to get event information from Platform and display it in Studio.

Example:

How to get a list of the servers registered to the Central:

<?php

try {

 // Connecting to the Platform central, where the web service is

available, using WSDL file.

 $platformWS = new

SoapClient('http://fireforge/ZendPlatform/server/PlatformWS.wsdl');

 // Logging into platform. Without that, no other action can be done.

 $result = $platformWS->login('admin','1234');

 // Some code to check the result should be added

 // Getting list of servers registered in the central

 $result = $platformWS->getServers();

Zend Platform User Guide

180

} catch(Exception $e) {

 echo $e->getMessage();

}

?>

Zend Platform

181

Enterprise Server

Contents:

Session Clustering

Job Queues

Zend Download Server (ZDS)

The Enterprise Server provides the most comprehensive feature set as it is bundled with the

Integration Server and the Performance Management Server. The Enterprise Server provides

enterprise grade functionality for managing multi-server environments, ensuring interoperability and

information consistency between nodes belonging to a cluster.

The Enterprise Server includes:

 Session Clustering - A highly scalable solution for synchronizing session data across a cluster

of PHP servers.

 Job Queues - Platform’s Job-Queue provides PHP production environments with a standard

approach to streamline offline processing.

 Zend Download Server - A PHP (Zend Engine) plug-in which deals with serving large

downloads which are served over the HTTP protocol.

Zend Platform User Guide

182

Session Clustering
Contents:

Session Clustering Statistics Session Clustering Storage Models

Session Clustering Settings Defining Storage Models

The Importance of Session IDs Fine Tuning Session Clustering

The Session Clustering module is designed to provide a highly scalable solution for synchronizing

session data across a cluster of PHP servers. This means that PHP implementations that were not

originally designed with scalability in mind, can now grow beyond a single server, to a Web Cluster.

The Session Clustering module is applied to your servers and nodes through the installation process

and immediately begins to work transparently.

With Zend Platform users can define Session Clustering Settings and view Session Clustering

Statistics.

What is Session Clustering?

Sessions "reside" on the machine on which they were first created. Later on, sessions are delivered

from one machine to another, following requests from alternate servers to the original server. This

solution is fully distributed and delivers high performance and scalability.

The session clustering module is intended for PHP applications in clusters dealing with heavy loads.

This module addresses the focal point of best practices - PHP development with the intent to elevate

concerns over corruption of session data and erratic application behavior.

The Session Clustering module provides a comprehensive solution for synchronizing session data

across a cluster. In this module the sessions that "reside" on the server where they were first created

are subsequently, delivered to other servers in the cluster. This is done by having the alternate

server, request the session data from the original server. This means a fully distributed solution -

delivering high performance, linearly scalable solution utilize existing hardware investment, while

ensuring the ability to continue growing.

The figure below illustrates the session clustering module components:

 Session storage: where sessions are stored, this can be either memory, or disk-based

storage with a tunable memory cache

 Zend Session Manager (SCD): the Session clustering daemon, that transfers sessions from

session storage to the PHP engine and from remote nodes

 mod_cluster: the PHP session handler that communicates with the session clustering Daemon

Zend Platform

183

Figure: SC Architecture

The Session Clustering module employs strong locking and data integrity mechanisms to ensure that

sessions are never corrupted. Session Clustering is also tunable with two different session storage

models: write through or delayed write, allowing organizations to choose their preferred storage

model.

The Session Clustering module can be integrated into any existing PHP application that uses PHP’s

native session extension - without changing any code. Session Clustering implements a native PHP

session module, and switching between the existing solution and session clustering is simply a matter

of changing a PHP.INI directive.

Important Note:

When deploying SC in an organization it is forbidden to change the Session ID for any reason and in

any way (such as using the PHP function session_id()).

Cluster Configuration

In a cluster configuration the SCD issues UDP broadcast messages every 30 seconds

(mod_cluster.ha.broadcast_delta). Each message contains the following information:

msg ID protocol

ID

sender's

ID

sender's

port

sender's

load

payload

size

payload

32bit 32bit 32bit 32bit 32bit 32bit optional

In general, there should be 3 ports of interest when configuring the Session Clustering:

1. TCP port for inbound connections - mod_cluster.network.tcp_port_remote [34567]

2. UDP port for broadcasts - mod_cluster.ha.udp_port (no relation to HA whatsoever) [45678]

3. TCP port for the Messenger to connect to the SC daemon -

mod_cluster.message_server_port

The Node should be set correctly by hostname: mod_cluster.network.hostname, and the proper IPs or

IP Mask should be added to the allowed hosts in: mod_cluster.allowed_hosts.

Zend Platform User Guide

184

There are four reasons behind cluster node communications in a cluster:

1. TCP: Relaying a Session (RelayNode -> MasterNode)

2. TCP: Relaying a Session to Backup (RelayNode -> MasterNode) if the Master does not

responded properly (HA only).

3. TCP: Sending a notification that a Session has been changed to Backup (RelayNode ->

BackupNode) (HA only).

4. UDP: "I am alive" broadcasts with load statistics (a backup is selected by Master

automatically from the minimally loaded host).

Adding New Servers to the Session Clustering Environment

The following procedure describes how to add a new server to a Session Clustering environment in

order to enable session sharing in a cluster.

To make sure that a new server will share session information:

1. Add the new server by installing the node installation on the server

2. Configure the new server in the Central Server (through Platform Administration in

Platform | Cluster Management | Manage Servers) to be a member of the required

group.

3. If you are reallocating an existing server to a different Group, un-attach the server

from its existing group and then add it to the new group.

Session Clustering will be applied to the added server.

Session Clustering and HA (High Availability)

HA is a solution that uses the SC infrastructure to provide availability and continuity of mission critical

business applications.

Session Clustering HA (High Availability), is an additional safety layer for maintaining session

information integrity in Web cluster environments. HA ensures that sessions will be serviced in case of

a single failure.

Session Clustering HA provides all the current Session clustering functionality and is an optional

feature for environments that require High Availability.

Note:

As an additional functionality layer, running HA may have a slight impact on performance in

comparison to regular session clustering response time.

Zend Platform

185

About HA

The HA layer preserves session information when a server fails. Each session is saved twice, once on

the master (originating) SCD and one on the master's backup SCD. This means that in the event that

a master server fails, requests are re-routed to the backup SCD. Once a request is re-routed to the

backup SCD, the Backup SCD turns into a master SCD and creates a new backup SCD. A backup SCD

is chosen based on it activity locating the SCD with the least amount of sessions and open sockets. In

the event that two servers fail session information will be preserved in the backup and can be

replicated if requested in its lifetime.

Regarding response time, the HA layer will not impose more than a 10% performance degradation

over the existing session clustering solution (number of session requests per second).

As mentioned earlier, all nodes that need to share session information have to be associated to a

cluster in Zend Platform (Grouped). The HA layer is also capable of identifying when a fallen server

has been recovered and will automatically return the fallen server into service.

Zend Platform User Guide

186

Session Clustering Statistics

The Session Clustering Statistics tab is accessed from Session Clustering | Statistics.

The SC (Session Clustering) Statistics tab displays statistical information on SC sessions that occurred

in the system. This information provides a detailed insight into the SC activity occurring on clusters

and nodes monitored by Zend Central. Consequently, statistical information is displayed by name,

server name for standalone servers and group name for servers belonging to a group.

Data displayed in the Statistics tab, relates to the SC information collected since the last time a node

was restarted.

There are two options for updating the information:

 To get the latest statistics (refresh the display) use the "Update Clusters Data" button located

in the right-hand side of the top bar.

 To reset the information displayed in the tables, restart the node’s web server and click

"Update Clusters Data".

Notes:

Statistics can only be collected from servers running an active SC installation.

SC Statistics are accessed by going to: Session Clustering | Statistics

Figure: SC Statistics

The SC Statistics table displays the following information:

Column Description

Cluster Name Displays the name of the node or group depending on if the server

is a standalone server or the server belongs to a group. If the

server belongs to a group, the group name will appear as a link,

pressing the link adds an additional "Servers for Cluster" table

detailing statistical information per server belonging to the

selected group.

Quantity (Qty.) of

Sessions

Number of sessions that occurred since the last node restart.

Quantity (Qty.) of Saves Number of saves that occurred since the last node restart.

Session Size Size of sessions that occurred since the last node restart

separated to the largest, smallest and average.

Comments Displays system comments relating to server availability.

Note:

Additional information on how to configure groups can be found in Manage Groups.

Zend Platform

187

A Statistical information itemization of the servers belonging to a group can be viewed by, double-

clicking on a Group name in the Cluster Statistics table.

Double-clicking on a Group name opens an additional table that lists information on all the servers

belonging to the selected group.

Figure: Group Statistical Itemization

Zend Platform User Guide

188

Session Clustering Settings

The Session Clustering Settings tab is accessed from Session Clustering | Settings and selecting a

node or group from the selection tree.

The SC (Session Clustering) settings tab enables to define individual SC settings per server (node) or

Group.

Note:

The settings defined for a specific node/group can be later applied to additional nodes/groups by using

the Clone Settings option from the Settings tab. (Additional information about cloning settings can be

found in Clone Wizard).

The active buttons on the SC Settings tab are:

 Stop - Shuts down the SC Daemon.

 Start/Restart - Restarts the SC Daemon.

 Save - Applies and saves the settings.

 Clone Settings - Applies settings to another server or group.

Note:

Windows all supported versions should use the service manager to Start and Stop services (Start/Stop

options in the Tab will not be available).

SC settings are separated by category and provide configuration options as follows:

General Settings

General settings determine the basic session's behavior and output.

 Mod Cluster Verbosity Level - Set the verbosity of the Mod Cluster’s output to the log

 Daemon Verbosity Level - Set the verbosity of the Daemon’s output to the log

 Sessions Lifetime - Define the session’s time-out limit

 Garbage Collection Frequency - Define garbage collection intervals, for deleting unused

sessions (Unused sessions are sessions, that the last time they were used, is larger than the

interval)

 Session Clustering Daemon Threads - Determine how many Daemon threads can be

active at once.

Figure: SC General Settings

Zend Platform

189

Storage Settings

The initial storage settings were defined in the installation process, where the user could choose one

of the two available storage methods. However, this setting can be easily changed at any time by

selecting a different storage method from the Session Clustering Settings tab.

Note:

Additional information on storage methods can be found in "Session Clustering Storage models".

Figure: SC Storage Settings

Network Settings

Zend SC settings provides a way to grant communication to the SC Daemon by server (for multiple

servers you can use a Net Mask which implements Wildcards on IP addresses)

To change or add a host:

1. Go to Session Clustering | Settings.

2. Click "Add".

The Add New Allowed Host dialog box opens.

3. Enter the Settings for the new Allowed Host.

4. Click "Apply".

A new Host will appear in the Server Hosts category on the Network Settings screen.

5. To edit or remove a Host, click "Edit" or "Remove" (To the right of the Server Host

you wish to edit).

6. You will be prompted to confirm your new settings click "Save" to save the settings

to the database.

Figure: SC Network Settings

Net Masks:

The Net Mask option is used to define a string of IP addresses using Wildcards '*' to specify the range

of IPs that are either allowed or denied hosts. This option, allows to specify a range of IPs from 0-255

according to the selected amount of Wildcards for example if you choose to use the Net Mask option

to grant communication to the following IPs: 24 (10.1.3. *) all IP addresses beginning with 10.1.3 will

be granted access to the SC Daemon on this server.

Zend Platform User Guide

190

The Importance of Session IDs

The Session Clustering (SC) process starts when a user’s browser sends a request to a web server.

The Web Server then sends a request to the Session Server, which in turn checks if with the request

there is, a cookie, specifically one containing a Session ID. If a Session ID is found, the web server

can find the server by session and resume the previous session. If a Session ID is not found, the web

server creates a new Session ID and sends a cookie containing the new Session ID to the browser.

Session Key Format

When a session is saved without Session Clustering (modfied php extension), you will see in the logs

only in the Session Key.

The Session Key format is: Master-Port-Backup-Port-Version-Key. The backup port is only used for

High Availability therefore, when HA is not in use, the session key will be: Master-Port-00000000-

00000000-Version-Key.

HA Note:

The format Master-Port-00000000-00000000-Version-Key will also appear in HA mode if you are

working on a cluster with only one available server or when evaluating the product with only one

server.

To obtain SC functionality the SC module changes the Session ID’s standard format as follows:

1. Internal information is stored in the Session ID.

2. Session IDs are stored by the Session Cluster module and therefore do not resemble Session

IDs created by other PHP session modules (e.g. mod_files).

As a result of these dependencies and changes, other modules should not use Session Clustering's

Session IDs.

Important Note:

When deploying SC in an organization it is forbidden to change the Session ID for any reason and in

any way (such as using the PHP function session_id()).

Zend Platform

191

Session Clustering Storage Models

The Session Clustering module has two methods of writing session information. Each method provides

enhanced capabilities in different areas and should be selected according to organizational

preferences.

The methods are:

 Memory

 Disk - Within the Disk storage model are two methods:

• Write Through

• Delayed Write

Memory

The Memory method stores session information to the memory based on the memory allocate for this

purpose by the Platform installer. The Memory method is a solution for temporarily storing session

information that does not need to be permanently stored. All session information is deleted from the

memory once the server is restarted.

Write Through

The "Write Through" method immediately writes session information to both memory and disk,

preventing additional actions while the session information is being stored.

Use the "Write Through" method if information integrity is more important than performance. The

action of writing to the disk and memory takes longer, however; the session information is more

secure, and less vulnerable to possible hardware failures that may occur and cause information loss.

The "Write Through" method is the recommended method for employing on mission critical

applications as session information is immediately written to the disk without any time intervals that

could cause loss of information if the Daemon fails. This method should be used for critical session

information such as, credit card information or social security numbers. Although, the preferred

method for storing mission critical session information is by deploying HA in your environment.

Delayed Write

Use the "Delayed Write" method if enhanced performance is high priority. This method writes session

information to the memory and only later after X seconds) stores the session information to the disk

providing enhanced performance.

Zend Platform User Guide

192

The "Delayed Write" method saves session information to the memory and every X seconds flushes

the session information to be stored on the disk.

Zend Platform

193

Defining Storage Models

The storage methods are determined from the directive: mod_cluster.storage.flush_delta.

Description:

Determines the storage method and intervals for storage flush.

 To set the Write Through method: mod_cluster.storage.flush_delta = 0

 To set the Delayed Write method: mod_cluster.storage.flush_delta = 1-n (seconds)

The Session Clustering installation script prompts to select a Storage Method. If the delayed write

method is selected the delay will be set by default to 5 seconds. To change the defaults after

installation go to this directive in Configuration | PHP Configuration | Extensions | Zend Session

Clustering and change the mod_cluster.storage.flush_delta value.

Fine Tuning Session Clustering

The following instructions describe your tuning options for Session Clustering. A complete list of the

Session Clustering directives is located in the Reference section. Additional information can also be

found in Appendix A - Troubleshooting Zend Platform.

Fine Tuning Options

 In most cases, Session Clustering should be set to memory:

mod_cluster.storage.use_permanent_storage=0 (in HA mode, storing sessions permanently

is overkill, so if you do so, at least cache the sessions in memory and flush infrequently).

 In case HD is used, you might like to tune the mod_cluster.storage.memory_cache_size and

mod_cluster.storage.flush_delta directives, to get a better performance by using Memory-to-

HD wisely. Flush_Delta=0 means direct write to disk, otherwise number of seconds until

flushed from memory to HD.

 If you don't need the Sessions Statistics, you can set a lower rate of updates to the log, with

the directive: mod_cluster.statistics_delta_minutes.

 Session Lifetime and Garbage Collection: mod_cluster.session_lifetime = 900 (15 min)

 mod_cluster.garbage_collection_delta = 1800 (30 min)

 To fine tune the broadcast, you should concentrate this directive:

mod_cluster.ha.broadcast_delta. What needs to be considered is the possibility of all SC

daemons broadcasting at the same time.

 Have the mod_cluster.storage.dir_levels directive set to min 2 and max 2.

Other Directives

 Log rotation - you can set the number of minutes between checks and minimum log size to

rotate in the following directives:

• mod_cluster.log_rotation_delta

• mod_cluster.log_rotation_size

• mod_cluster.storage.filename_cache_num_entries - (1-1024) [200]

Zend Platform User Guide

194

Job Queues
Contents:

Creating Jobs Job Details

Job Queue API Job Queue Settings

Job Management Job Queue Server

Queues

Jobs

Platform’s Job Queues feature provides PHP production environments with a standard approach to

streamlining offline processing.

Job Queues are serviced by the Job Queue Server and provide organizations with the ability to pre-

schedule and determine Job activity to the level of even defining the processing server. Job Queues

provide the necessary functionality to delay the execution of processes that are not essential during

user interaction with the Web Server. Off loading non essential processes frees up your servers to

provide a better user experience in terms of response time.

Requests can be off-loaded in one of two ways:

 By rerouting the requests to different Web server (Such as a server that does not perform

customer-facing processes).

 By scheduling requests to be performed in low traffic hours to reduce the traffic on the Web

server

Incorporating job management functionality into Platform provides several obvious benefits such as

the ability to manage queues in one-stop-shop fashion to managing your Web application environment

from a "single point of access".

Along with these advantages, Platform also enables you to:

 Manage Job fault and Performance using PHP Intelligence which fully monitors Jobs run by

the Job Queue. Subsequently, whenever a Job generates a fault or performance degradation

occurs, PHP Intelligence will generate a system Event containing the occurrence's details -

information that can be later used to debug the occurrence.

 Generate real-time and historical reports for Jobs - Platform offers Queue and Job reporting

according to various criteria including: Current Jobs and Job History as well as current Queue

load statistics that indicate any potential performance degradation.

 Leverage Job performances through code caching and content caching - Jobs can run under

the Platform performance environment.

 Flexible installation options - Queues are optionally created during Platform Node installation.

After installation the Queue becomes immediately available in the Central and can be

configured and controlled from a central location.

Additional Information:

View our Job Queue FAQ for commonly asked questions and the answers

Zend Platform

195

Jobs

Jobs are scheduled routines, that are processed at a certain point in time, whether it be time based or

action based.

Zend platform's Job Queue functionality provides the means to run jobs in several ways to suit

different needs using the following tools:

 The Job Queue API

 The Job Queue Tab in Zend Platform

Jobs can be created by directly adding functions to the Code using the Job Queue API. These Jobs are

automatically detected by the Job Queue. Additional, simpler jobs can be created directly from the

Jobs Tab by basically, defining the Jobs METADATA and directing to a script that needs to be run.

Once Jobs are defined or identified by the Job Queue functionality you gain the ability to change,

modify and reschedule the Job details and settings while storing historical information for future

reference.

Additional Information

The following points refer to Job behavior in specific situations:

Can Jobs be scheduled on a specific server and setup a backup server that would run even

if the server is down?

It is possible to install several Job Queue daemons on different servers to run the same Job, but

currently it is not possible to create a dependency between Jobs. If you still require a solution to

monitor Job execution, an additional option is to create a separate queue on a server that has

sufficient access rights to monitor the expected results of running the Job and create a script, using

the Job Queue API to re-run run the Job (on a different server) if for some reason the original Job was

not executed.

What happens if the server was down and then comes up again?

If the server falls all jobs are recovered. If server went down while actually executing a job it will be

re-executed.

Execution of jobs that weren't executing depends on the specific Job's attributes:

 If the job's end time has passed while server was down it won't be executed

 If the job's scheduled time has passed while server was down it will be executed immediately

 If the job wasn't supposed to run yet, it will be executed as usual.

Zend Platform User Guide

196

Job Queue API

The Job Queue API contains a set of functions that enables to run a Job directly from your

application's scripts. Running Jobs with the API, is beneficial in situations where a certain query has to

be run in parallel with other actions. Such a situation could be in an online store where a user's credit

card details have to be authenticated. In such a case the authentication process can be a Job that is

activated when the user enters the credit card details. The authentication process, may take some

time therefore, this job can be run separately on a separate server or even on a dedicated secure

server (for credit card details). These Jobs can even be scheduled to run the authentication query at a

later time when there is less traffic.

Example:

An example of this kind of script is as follows:

<?php

$job = new ZendAPI_Job('/usr/local/scripts/scrip1.php');

$job->setJobPriority(JOB_QUEUE_PRIORITY_HIGH);

$job->setUserVariables(array('name' => 'customer name', 'email' =>

'somebody@somewhere.com'));

?>

This script should be added to the application's script, at the point where you want to run a query. As

we can see from this example, the new Job ($job) contains information indicating to the location of a

script (scrip1.php). This script will contain the query that we want to run. Surrounding that script are

different parameters that define the Job's variables, priority and other essential information. This

information is also picked up by Platform so that it can be viewed in the Jobs Tab eliminating the need

to open numerous small files in order to find information relevant to managing Jobs.

Important Note:

All scripts managed by the Job Queue have to be placed in a set location. To view the default location

or define a different location go to Job Queue | Settings and in the General Settings section view or

change the Scripts Folder.

This naturally is only a simplified example of a basic Job that will run a query (script) and send an e-

mail. The sections on APIs and Directives contain a complete description of the Job Queue API.

Additional Example:

Change the recurrence data of an existing job and add to it a dependency (assuming that

the job id is known)

<?php

$job_queue = new ZendAPI_Queue('gollum.zend.office');

$job_queue->login('1234');

$job = $job_queue->getJob(8);

$job->setRecurrenceData(3600, time()+3600*24);

$job->setJobDependency(16); // This job will perform only after job

16 was successfully executed

$job_queue->updateJob($job); // The job queue will update job #8

with the new properties of the given Job object

?>

Get all the jobs from a queue with urgent priority that waiting for process and belong to

application id 8, change their priorities to LOW

Zend Platform

197

<?php

$job_queue = new ZendAPI_Queue('gollum.zend.office');

$job_queue->login('1234',8);

$jobs = $job_queue->getJobsInQueue(

 array('priority' => JOB_QUEUE_PRIORITY_URGENT,

 'status' => JOB_QUEUE_STATUS_WAITING

// we could also request for jobs in application id using the following

line:

//'application_id' => 8

)

);

foreach ($jobs as $job) { /* @var $job Job */

 $job->setPriority(JOB_QUEUE_PRIORITY_LOW);

 $job_queue->updateJob($job);

}

?>

Zend Platform User Guide

198

Job Management

The Job Queue tab is accessed from Job Queues | Jobs.

The Job Queue tab is accessed by clicking the Job Queues option. The Job queue configuration and

management options include the following tabs:

 Queues - Displays Queue information and statistics.

 Jobs - A filterable display of Job information.

 Settings - Configure Queue settings.

Note:

In all of the tabs, the selected Queue name is displayed in the upper status line.

Zend Platform

199

Queues

The Queues tab is accessed from Job Queues | Queues.

A queue is a logical container which contains a set of Jobs to be executed concurrently. Currently it is

possible to setup a single Queue for a single machine.

The Queue page allows users to handle and manage queues across a cluster.

The Queue page is accessed from: Job Queues | Queues.

Through this screen users can:

 View Queue details and statistics.

 Queue Operations:

• Add Jobs.

• Suspend a Queue.

• View/Edit Settings.

Figure: Queue Statistics Page

Queue Details and Statistics

Queue Statistics table displays information regarding a specific queue.

The table's columns are grouped into three different groups pertaining to different information as

follows:

 Completed Jobs - Displays the number of completed jobs, divided into Successful and

Failed:

• Successful - Number of Jobs belonging to the queue that ran successfully.

• Failed - Number of Jobs belonging to the queue that ran but failed.

 Current Jobs - Displays the number of Jobs that are currently being processed, by type. The

types are:

• Recurring - Number of recurring jobs belonging to the queue.

Note

All recurring jobs are counted in this column regardless of their execution status i.e. including 'Ready

to Run' and 'Waiting' jobs.

• Ready to Run - Number of jobs belonging to the queue that are ready to be executed.

• Waiting - Number of jobs belonging to the queue that are waiting to be executed.

Zend Platform User Guide

200

Note:

Jobs with the status Scheduled (i.e. waiting to future schedule time) and Dependent (i.e. waiting for a

previous job to be completed) jobs are counted in this column.

 Load Statistics - Displays statistics regarding job occurrences such as jobs that

entered/exited the queue etc. The Statistics can be defined to display information on

occurrences in the last X minutes. To define the duration go to Job Queues | Settings and set

the time in the field "Save statistics history". This part of the table displays four types of

statistics for queues:

• Average Waiting Time - The average time it took for all of the jobs to move from the

'Ready to Run' status to 'Running'.

• Average Time in Queue - The average time it took for all of the jobs to move from the

'Running' status to Successful/Failed.

• # of Requested Jobs - The number of jobs that have exited the queue (either successful

or failed).

• # of Served Jobs - The number of jobs that have entered the queue (i.e. added to the

queue).

The bottom row of the table displays the statistical accumulation of the entries in the table.

Queue Additional Details

Clicking on a row will automatically open the Jobs page which will display the Jobs related to the

selected queue. The selected queue will also be remembered for further operations so that when

entering the Settings page the settings for the previously selected will be displayed.

Queue Operations

The Queues table has an additional column that includes the different actions that can be performed

on a queue as follows:

 Operations - The possible actions that can be performed on a queue. the operations are as

follows:

• Add Job - Add a new job to the queue. Clicking this button opens the 'Job Details' page

in add mode.

• Suspend - Suspend the entire Queue (Jobs belonging to a queue can be individually

suspended by clicking on the Queue and modifying the queues displayed in the jobs

page).

• Settings - View and Edit Queue settings.

Add Jobs

Clicking the "Add Jobs" button in the table opens the Job Details screen in edit mode. To add a Job

enter the Job information and click " Save" (For more information on creating new Jobs see Job

Details).

Note:

Jobs can only be added if there is an existing Job script located in the "Scripts folder" you defined in

the Job Queue | Settings screen.

Suspend a Queue

Clicking the "Suspend" button in the table changes the status of the Queue to Suspended. In this

status, all Jobs belonging to the Queue will not be executed and running jobs will be completed and

Zend Platform

201

only then suspended. Clicking this button again will toggle the status of a suspended queue to not

suspended and the Jobs belonging to this queue will be resumed at the next possible time (for

recurring jobs).

New Jobs can be added to a suspended queue however, they will not be executed until the queue is

 not suspended.

View/Edit Settings

Clicking the "Settings" button opens the Job Queue Settings screen and loads it with the selected

queues settings (For more information on viewing and editing queue settings see Job Queue Settings)

Zend Platform User Guide

202

Jobs Tab

The Jobs tab is accessed from Job Queues | Jobs.

A Job is a specific task that can be independently executed. Using the Platform's Job Queue feature,

Jobs can be handled in queues providing an easy way to manage and handle Job execution.

The Jobs screen is accessed from: Job Queues | Jobs.

Through this screen users can:

 Filter Table Data

 Locate Jobs by their ID number

 View Job Details in a sortable table

 Manage Jobs

Figure: Job Queue Screen

Zend Platform

203

Filtering Table Data

Zend Platform allows you to filter the Jobs displayed in the Jobs table.

The filter options are as follows:

 Queue - The name of the Queue

 Status - The statuses are: Scheduled, Dependant, Ready to Run, Running, Suspended,

Successful and Failed.

 Priority - High, medium or low.

 Host - The host on which the Job is to be executed.

 Application

 Recurrence - Jobs can be nonrecurring (run once) or recurring (defined to be executed

repeatedly).

 Name - The alias for the Job script. Defined when creating a new Job or in Code based Jobs

defined in the function: setJobName($name), if left empty the filter by script name.

The status line (above the filter by options) changes to show a summary of the items that are

currently displayed in the table.

To filter the data displayed in the Jobs table:

1. Select the filter criteria to apply to the table by clicking "Filter By" and selecting the

options from the drop-down lists..

2. Click "Go" to display the filtered events in the Jobs table.

The Jobs Table displays the following information:

 ID - a unique identifier given to each Job managed through Platform.

 Name - an alias for the Job script. Defined when creating a new Job or in Code based Jobs

defined in the function: setJobName($name), if left empty the script name will be displayed.

 Status - the current state of the Job (see list of statuses below)

 Priority - the importance of the job, the priorities are (in order of importance) Low, High,

Normal, Urgent. Defined when creating a new job or in code based Jobs defined in the

function: $_priority = JOB_QUEUE_PRIORITY_[TYPE];

 Application - an additional identifier for grouping and filtering Jobs. Defined when creating a

new Job or in Code based Jobs defined in the function: $_application_id = null, if left empty

no name will be displayed.

 Host - the name of the Host on which the Job was generated.

 Script - the name and location of the actual script initiated by the Job.

Zend Platform User Guide

204

Job Statuses

A Job can hold one of the following statuses:

 Scheduled - a Job which is waiting to be executed since it has been scheduled to a time

later than the current time.

 Dependent - a Job which is waiting to be executed since it waits for a previous Job to finish

running.

 Ready to run - a Job which is ready to be executed.

 Running - a Job which currently runs.

 Suspended - a Job which can run but is currently suspended (paused). A Suspended Job can

be resumed and hence moved to another status.

 Successful - a Job which has completed and resulted in a success.

 Failed - a Job which has completed and resulted in a failure. There are two types of failures:

• Execution - when the Job Queue failed to execute the script (for example, the file was not

found).

• Logical - When the script's logic produced some kind of error that terminated its execution

(e.g. when using the set_job_failed() API function).

Note:

The maximum amount of Jobs displayed in this page is configured in Platform | Preferences.

Locating Jobs by Job ID

Each Job is given a unique ID number when it is created. If you know the Job ID of a specific Job you

want to view, enter the number into the "Find Job by ID" field and click Find to display the Job in the

Jobs table.

View Job Details

The Jobs table displays various details regarding the displayed Jobs.

Apart from the basic information displayed users can click on a Job in the Jobs table and open the Job

Details Page (for more information on Job Details see Job Details).

Manage Jobs

The Jobs tab includes the following Job management options:

 Delete - Remove a Job from the list. Jobs that are in progress will complete running and

then be deleted.

 Resume - Resume a Job that was previously suspended.

 Suspend - Suspend a Job from running.

To apply one of these options to a Job, select a Job by marking the check box (you can select more

than one) and click one of the Job management options (Delete, Resume or Suspend).

If you want to apply one of the options to all the Jobs in the table click "Select All".

Note:

When applying one of the management options to multiple Jobs make sure their current state does

not conflict with the option for example, you cannot delete active Jobs.

Zend Platform

205

Job Details

Job Details tab is accessed from Job Queues | Jobs and clicking on a job in the list.

The Job Details tab, displays a specific Job's properties. This page has two modes: Read-only and Edit.

 To add Jobs go to: Job Queues | Queues and click "Add Job".

 To view Job details go to: Job Queues | Jobs and click on one of the Jobs in the table.

 To edit Jobs go to: Job Queues | Jobs, click on one of the Jobs in the table.

Figure: Job Details

Job Details Page Components

The following is a detailed description of the Job Details page components (Components marked with

* can be edited in edit mode):

 Job Id - A unique identifier that is given to each Job. You can use this identifier to search for

Jobs in Job Queues | Jobs by entering the ID into the "find Job by ID" field.

 Name - The name given to the Job by the user.

 Status - The statuses are: Scheduled, Dependant, Ready to Run, Running, Suspended,

Successful and Failed.

Zend Platform User Guide

206

 *Priority - High, low or medium.

 Application - The application running the Job

 Host - The host on which the Job runs.

 Script File -The location of the script for running the Job.

 *Dependency - Create a dependency on another Jobs completion. In edit mode, clicking here

will open a pop-up with a "search Job by name" option.

 *Scheduling - View or define when the Job will run, recurrence details and effective date.

 Last Run - Details of when the Job last ran.

• Show job output - Opens the Job's script, the default mode "Show as secured

output" that opens the un-rendered script (this is the default setting) the second

option "Show as plain text" will show the rendered output". The secure output option

is a default setting that cannot be changed and has been implemented to prevent

displaying unsecured scripts.

 Context - Includes the following Variables:

• *User Variables - Shows the name and value of the Job's user variables.

• Globals - Shows the name and values of the Job's global parameters.

 Preserve (E) - if this flag is turned on, it means that the Job history will be saved in the

history data even after the 'Time to Save History' time has passed. This is useful if the Job

history needs to be saved.

Job Details Page Buttons:

The following actions can be applied to Jobs.

 OK - Closes the dialog.

 Delete - Opens a dialog asking whether the user is sure he wishes to delete the Job. Clicking

"No" will close the dialog, and clicking "Yes" will delete the Job and the Jobs page would be

displayed. Deleting a Job would delete its instances from the historical data as well.

 Suspend/Resume - this is a toggle button, it will be active for suspended Jobs and disabled

when a Job is not suspended.

(This button is only displayed when Jobs are still running)

 Edit - Displays the same page in the "Edit" mode.

(This button is only displayed when Jobs are still running)

 Re-queue - Displays the same page in "Edit" mode. As a result users will be able to re-set the

scheduling data, and then re-queue the Job (add it back to the Queue).

(This button is only displayed when Jobs are still running)

The following buttons are only displayed in Edit mode:

 Save - Saves the Job's data.

 Cancel - Closes the Job Details page without saving changes.

Zend Platform

207

Job Queue Settings

The Job Queue Settings tab is accessed from Job Queues | Settings.

The Job Queue Settings tab displays settings associated with a specific Queue.

Note:

Windows all supported versions should use the service manager to Start and Stop services (Start/Stop

options in the Tab will not be available). To view a Job Queue service's status or to stop/start it,

please open your Windows Services panel (by clicking Start | Control Panel | Administrative Tools |

Services) and locate and run the Platform Job Queue service.

Through this screen users can:

 View Queue settings.

 Edit Queues

Figure: Job Queue Settings

Zend Platform User Guide

208

Viewing Queue Settings

The following procedure describes how to view queue settings. Queue settings are the specific

definitions that define the Queue's behavior.

There are two ways to determine which Queue will be displayed in the Settings

screen:

1. Select a queue from the "Settings for Queue" drop-down list.

2. Navigate to the Job Queue Settings tab from the Queues tab (Job Queues |

Queues).

Clicking the Settings button in the Queue Statistics table automatically opens the

Job Queue Settings screen and loads the selected queues details.

Queue Settings

The title of the Job Queue Settings tab always states the name of the Queue displayed in the tab.

Typically, the recently-selected Queue (i.e., the one recently selected in the Queues page) will be

selected in the drop-down list. If a Queue was not previously selected the user has to choose a queue

from the "Settings for Queue" drop-down list. Displayed queues are remembered therefore users may

switch tabs and when they return to the Job Queue Settings tab and the same queue will still be

displayed.

The Job Queue Settings are divided into three sections:

1. General Settings:

 Maximal Queue Depth - Specifies the amount of concurrent Jobs for the queue or

leave it unlimited.

 Save Statistics History - Specifies how much of the queue's history should be saved.

 Maximal re-queue times - Specifies how many times a Job can be re-queued.

 Sliding window - Collects Job Statistics

 Queue Alias - Displays the Queue's name according to the name given in the

installation process.

 Script folder - Specifies the file name and location of the script the Queue should

run.

2. Password Settings - Specifies the security settings to limit editing and deleting a Queue to

authorized users only. Not entering a password will mean the specific Queue will not require

authorization.

 Enter New Queue Password - Specifies a password for limiting access to the Queue.

 Confirm New Password - Confirm the password.

3. Network Settings - List of allowed hosts.

 Add/Edit/Remove Server Host - Configure the IP's that are permitted to

communicate with the Queue Daemon on this server.

Editing Queues

The following procedure describes how to edit Queues.

Zend Platform

209

To edit a Queue:

1. Go to Job Queues | Queues

2. In the Queue Statistics table, Click "Edit"

The Job Queue Settings tab will open with the selected queue's information

3. Edit the Queue's settings and press Save.

The changes will be saved.

The Job Queue Server is a container for Queues, it executes Queues according to a scheduling

algorithm (e.g. Round Robin). Typically a machine only runs one Job Queue Server.

A Queue is a logical container which contains a set of Jobs. The Queue executes the Jobs and contains

information about each Job. Each Queue is associated with a set of settings. For additional

information, please refer to Job Queue Settings.

Zend Platform User Guide

210

Zend Download Server (ZDS)
Contents:

Configuring the Zend Download Server (ZDS) Test Download

ZDS Settings Understanding Test Results

Testing the ZDS

The Zend Download Server* is a PHP (Zend Engine) plug-in which efficiently deals with serving large

downloads such as videos e.g. .mpeg files, binary products such as .exe and .msi files, and any other

large files which are served over the HTTP protocol.

How it works:

The Download Server supports two modes of operation (both of which can be used together or

separately according to your needs):

 Manual mode - The download is initiated by a PHP script using one simple PHP API function

call. Not only does it allow you to serve files which aren't under your web server's document

root but also it allows you to run logic such as access restriction checks before the download

is started.

 Transparent mode - In your web server's configuration file you map the files you want to

be sent through the efficient downloading mechanism to PHP, and the Zend Download Server

will jump into action automatically and serve them.

*The Download Server is currently not applicable for Windows Operating Systems.

Configuring the Zend Download Server (ZDS)

Zend Download Server settings are accessed from ZDS | Overview.

(This feature is currently not applicable for Windows Operating Systems)

The ZDS (Zend Download Server) is a PHP (Zend Engine) plug-in. The purpose of this plug-in is to

efficiently deal with serving large, downloads. This is done to preserve Website performance levels

when handling large downloads that are served over the HTTP Protocol and consume bandwidth.

Downloads include, Video Files, Binary Products (such as .exe and .msi files), and other large files

which are served over the HTTP protocol, and can potentially limit the performance of your Website.

The ZDS provides two options:

1. Configure ZDS Settings

2. Test ZDS

ZDS functions in two modes:

 Manual Mode - Calling the API function zend_send_file() from PHP scripts.

 Transparent Mode - mapping file extensions to zend_mime_types.ini

Either mode can be run separately or in conjunction. Read on to find out how to configure the ZDS to

run in either mode.

Zend Platform

211

Manual Mode

In Manual mode, downloads are initiated by a PHP script that uses one all-purpose PHP function call.

ZDS includes the PHP functions zend_send_file(filename[,mime_type][,custom_headers]) and

zend_send_file(string buffer[, string mime_type][, string custom_headers]).

Calling zend_send_file() immediately starts the file download and terminates your PHP script's

execution. This effectively frees up the Apache process to handle the next incoming request.

The zend_send_file() function can also serve files that are not under the Web server's document root.

Furthermore, it can be used to run logical functions such as access restriction checks, before

downloads are started. From an external point of view, the effect is similar to fpassthrou ($fh) and

then exit.

zend_send_buffer is used when servicing large downloads created on-the-fly (such as PDF files, large

images etc.). When using this function it is important to specify the mime_type. From an external

point of view, the effect is similar to echo and then exit.

Example:

If a download function is called my_send_file($filename), you should integrate the

zend_send_file() call in the following way in your source code:

if (function_exists("zend_send_file")) {

 zend_send_file($filename);

} else {

 my_send_file($filename);

}

Alternate Method

zend_send_file can also be set to accept a second argument, the mime type of the file. This will

override the default mime type setting.

The parameters are: zend_send_file(string filename[, string mime_type]).

Example:

It would be called in the following way in your source code:

if (function_exists("zend_send_file")) {

 zend_send_file("/path/to/file.wma", "video/my-wma-type");

} else {

 my_send_file($filename);

}

zend_send_buffer

The parameters are bool zend_send_file(string buffer[, string mime_type][, string custom_headers]).

Example:

It would be called in the following way in your source code:

if (function_exists("zend_send_buffer")) {

 zend_send_buffer($my_picture_content,"image/giff");

} else {

 my_send_buffer($my_picture_content);

}

Zend Platform User Guide

212

Note:

If the mime_type is not specified or empty, the first mime type mechanism is used.

Manual Mode Usability Notes:

Do not create any output in Manual mode, before calling zend_send_file() - neither headers nor body

- as headers will not have any effect when sent by the ZDS (they will only take affect if sent outside

the ZDS).

Once you call zend_send_file(), the script terminates, so make sure all of your business logic runs

before you call this function.

Sometimes files that are not under the same document root need to be served. Therefore, It is

recommended to use the full path name to the file you want to serve. This will guarantee your script

will work, even if you move it from your Web server's document root.

Transparent Mode

In Transparent mode, the file types that should be downloaded via ZDS are pre-configured, by

mapping these files in the configuration file of your Web server. Files greater than the min_file_size

directive will be automatically served by the ZDS.

To run ZDS in Transparent mode, make sure you meet the following requirements:

 The file extensions appear in the zend_mime_types.ini file and the file is mapped to the

correct mime type.

For example: to serve .mpeg files via the ZDS, add the following line in

zend_mime_types.ini:

video/mpeg mpeg

 In your Apache Server’s configuration file, map the file type to PHP.

 For example, to map all .mpeg files to the ZDS in Apache by adding the following line to the

Apache Server’s configuration:

AddType application/x-httpd-php .mpeg

Both methods (manual mode and transparent mode) ensure that the Web application will continue to

work even if, for some reason, you decide to temporarily disable the ZDS, (as long as the ZDS module

was loaded).

To Configure the ZDS:

Go to ZDS | Overview.

Figure: Zend Download Server Settings

Zend Platform

213

The settings screen contains the general ZDS configuration settings:

 Download Server Enabled - Indicates if the Download Server extension is running

(Activating the Download Server here applies the changes to the Extensions list in

Configuration | PHP Configuration.

 Minimum File Size - The minimum size of files that will be served by the ZDS. Small files

need not be served by the ZDS, since performance gain is insignificant. Default: 64Kbytes.

 Server MaxClients - The testing tool (in Platform Administration) uses this value to

determine your server’s MaxClients. Keep this value updated to the actual number of max

clients of your server.

 Log File - The name and location of the log file where the ZDS reports completed downloads.

Default: <install_dir>/logs. Make sure the directory exists and that the user who starts the

Web server (usually root) has "write" permissions.

Server MaxClients Recommendation:

The MaxClients setting depends on your server hardware. To achieve accurate test results the server

should be set between 50-150 MaxClients. The MaxClients value must be the same in the Download

Server Settings and the Web server’s configuration file.

These settings are applied to downloads handled in one of the two handling modes: Manual and

Transparent.

ZDS Settings

The Zend Download Server Settings tab is accessed from ZDS | Settings.

 Download Server Enabled

An on/off switch for activating and deactivating the 'download Server (when set to Off large

downloads will be serviced through the regular channels).

 Minimum File Size

The minimum size of files that will be served by the 'Download Server.

Small files do not need to be served by the 'Download Server (although they can be) since

the gain is insignificant.

Default: file size is 64Kbytes.

 Log File

The name and location of the log file where the 'Download Server reports completed

downloads.

 Log Verbosity Level

This setting determines type of content to be added to the log file where the option

Informational includes the other options.

 Server Process Priority

The Priority of ZDS server process. A Higher value means lower priority. The value range is

1-19 and is calculated as max with the apache.nice setting. Anything computed value higher

than 19 will be converted to 19.

Note:

Make sure the file's directory exists and is writable by the user who starts the web server (typically

root). The default is <install_dir>/logs/ZDS.log.

Zend Platform User Guide

214

Testing the ZDS

The Test ZDS tab is accessed from Performance | Testing | Test Download.

Once the ZDS has been configured a test can be run to check and analyze the overall efficiency.

 The default ZDS test uses the Manual mode of operation to invoke a PHP script, which sends

a file of approximately 300KB.

 The same test tool can be used to check the 'Transparent' mode. Make sure that you

correctly map the file type you are checking in your Web server's configuration file -

according to the configuration instructions.

The test simulates multiple requests for a specified URL, with and without ZDS. There are three sets

of tests; each test is performed twice (once with the ZDS disabled and once with the ZDS enabled).

These tests differ in the number of concurrent clients that simultaneously perform requests to the

server.

Note:

It is extremely hard to artificially test ZDS. The main reason is that testing it on a LAN can easily

saturate your local network, and if your MaxClients is very high, Apache Benchmark (ab) may have

difficulty handling the concurrency. For this reason, it is recommended to test ZDS with a relatively

low MaxClients setting (e.g., 50-150) so that you don't reach any of these limits. The ZDS includes a

version of ab, which was modified to support bandwidth throttling, which is used by the testing tool.

Caution:

During a test, your Web server will be fully loaded. A test can take several minutes so you should run

it on a development machine or on an offline production machine.

To Test the ZDS:

Go to Performance | Testing and go to the Test Download tab.

Figure: Performance - Testing - Test Download Tab

Zend Platform

215

The Test Download Tab consists of two sections: The test options are on the upper section and the

test results appear below (after running a test or displaying the last test results).

Running a Test

1. Type in the URL you want to test.

The default test is a PHP script which uses zend_send_file() to send a 300K zip file

(Testing very large files will take a very long time).

2. Choose the bandwidth limit you want to simulate for the clients. For a faster test,

select a higher bandwidth (You cannot choose full bandwidth because your network

card will be saturated, making the test irrelevant. The test tries to simulate a typical

Internet server that has clients connected either by ISDN or DSL).

3. Enter the number of maximum clients that your server can handle.

Use the precise value by checking the value of the MaxClients directive in your

server’s configuration file (The ZDS tries to identify your MaxClients value in the

installation process, via the httpd.conf file, which is the default value. However, this

value can be changed after the installation; and should be double-checked. Using an

inaccurate MaxClients value, may not present accurate results).

4. Click Run.

Zend Platform User Guide

216

Test Download

The Test Download tab is accessed from Performance | Testing | Test Download.

The Zend Download Server (ZDS) is a transparent process that runs in the background to service

large downloads. The performance gain obtained by using the ZDS is measured with the Test

Download option.

The Test Download option checks the efficiency of the Download Server. Test Download simulates

multiple requests for a specified URL with and without the ZDS, thereby creating its own benchmark

for comparison. This feature is currently not applicable for Windows Operating Systems.

To Run a Download Test:

Go to: Performance | Testing and choose the Test Download tab.

1. Enter the URL for Testing. (The default is a proprietary Zend PHP script which uses

zend_send_file() to send a file.)

Note: Testing very large files will take a very long time.

2. Enter the bandwidth limit you want to simulate for the clients (For a faster test,

select a higher bandwidth).

Note: Do not select full bandwidth; doing so will saturate your network card that

will make the test irrelevant. The test tries to simulate a typical Internet server that

has clients connected either by ISDN or DSL.

3. Enter the Max Clients value defined for your server. Insert the accurate value by

checking the MaxClients directive in the httpd.conf file.

Note: The ZDS installation tries to identify your MaxClients value via the httpd.conf

file that is the GUI’s default value, but this value can be changed after the

installation, so it is important to verify that the value listed is correct.

4. Click "Run" to run the Download Test.

Viewing Download Test Results

Once the tests have completed, you can view the test results both statistically and graphically.

To view the results of the most recent Download Test:

From the Test Download Tab click, "Show Last Download Test Report". The test report

includes tables and graphs that display the Requests per Second and Number of Concurrent

Requests for each test run.

Note:

The Download Test is a simulation. The most meaningful test results are obtained by running ZDS on

the production server and monitoring the log file to see how many concurrent jobs the ZDS is

handling.

Zend Platform

217

Understanding Test Results

Once the tests have completed, you will see two tables and graphs with results that show Requests

per Second and Average Time per Request for each test run.

Figure: Download Server - Test Results

Disabling the Accelerator changes the test configuration to cached scripts only.

Note:

If you do decide to run the ZDS Test on a production server, you can watch the log file to see how

many concurrent jobs ZDS is handling. This indicates the number of Apache processes that would

have been used if the ZDS were not installed.

Zend Platform User Guide

218

Integration Server

Contents:

Java Bridge

BIRT Reports

SNMP Traps

The Integration Server includes features for integrating with external technologies and environments:

The Integration Server includes the following functionality:

 Java Bridge - used to access Java based applications running in a Java application server.

Platform’s Java Bridge offers significant performance and scalability advantages. Specifically,

the memory consumption in the PHP/Java Bridge is constant, regardless of the number of

PHP sessions-unlike the equivalent solution, for example, in PHP 5.

 BIRT Report Integration - extract Business Intelligence reports from Java libraries using PHP

(Requires the Java Bridge).

 SNMP Traps - An additional means of delivering Event information and parameters in a

standardized way to a management console. The Event information includes details about

occurrences (events) inside the system (For more information on SNMP, see About SNMP.

Zend Platform

219

Java Bridge
Contents:

About Common Tasks

Operating and Configuring Usability Issues

Java Bridge Tab

The Platform PHP/Java Bridge is a PHP module that connects the PHP object system with the Java

object system. It can be used to access Java based applications running in a Java application server.

Platform’s Java Bridge offers significant performance and scalability advantages. Specifically, the

memory consumption in the Platform PHP/Java Bridge is constant, regardless of the number of PHP

sessions-unlike the equivalent solution, for example, in PHP 5.

The PHP/Java Bridge feature should interest three types of enterprises:

 Companies that have investments in J2EE application servers can take advantage of PHP's

Web-enablement capabilities, while preserving the utility of their Java investment.

 PHP-centric companies that want to take advantage of J2EE services that are not present in

scripting languages-specifically, PHP.

 Companies that are not highly invested in J2EE and legacy systems can take advantage of

Platform’s PHP/Java Bridge to interact with plain Java objects.

 Companies that use or want to use Actuate reports.

Zend Platform User Guide

220

About the Java Bridge Technology

The Java Middleware module (JavaMW) provides PHP connectivity to Java. The API is analogous to the

standard PHP Java API (http://www.zend.com/manual/ref.java.php), however the implementation is

different. JavaMW uses a stand-alone Java server process, which allows it to efficiently process Java

requests. It adds stability and reliability to the PHP/Java connection. Unlike a standard PHP/Java

connector, it uses a single Java virtual machine for all the requests, which makes memory and

processor requirements significantly more modest while improving scalability.

The diagram below illustrates the Java Bridge technology:

Figure: Java Bridge Process Level

The Java Bridge Process Level diagram illustrates the following:

Platform Node

Platform Nodes include two bridging components: the PHP-side Bridge and the Java-side Bridge.

 Platform Nodes operate as follows:

1. A JVM (Java Virtual Machine) is installed first-before installing the Platform Node-on the

machine that is to be set up with Platform.

For the Java Bridge to function, you must install a compatible version of JVM. Platform will

find the compatible version automatically. Supported versions are SUN J2SE 1.4 or SUN

J2SE1.5 (J2SE 5).

2. Platform then installs the two components required-the PHP-side and the Java-side-to create

the Java Bridge.

3. A PHP application can call a Java object from any Java library that resides on the Node.

For example, JVM can be downloaded with all its component libraries.

When a PHP application calls a Java object over the Java Bridge, a proxy for that object is created in

PHP. In the diagram, the Java object is represented as a dark square; the proxy for that object in PHP

is shown as a light square.

Zend Platform

221

J2EE Application Server

The J2EE Application Server in its more advanced configuration, allows you to create a PHP/Java

Bridge between a Platform Node and an external J2EE Application Server. This type of configuration is

typical of companies that have existing Java-based infrastructure. The J2EE Application Server

operates as follow:

1. A PHP application can call a Java object from a Java library external to Platform.

2. The Java-side Bridge component communicates with the J2EE Server. It finds objects in the

J2EE Server, for example an EJB. The entire process is Java based.

3. The PHP application then calls the Java object over the Java Bridge created between the two

Platform bridging components.

4. A proxy for that object is created in PHP. In the diagram, the Java object is represented as a

dark square; the proxy for that object in PHP is shown as a light square.

The complete integration of Java and PHP is described in the following diagram:

Figure: Java Bridge System Level

The Java Bridge System Level diagram illustrates the following about the network

architecture:

 Platform Nodes - In order for a Platform Node to function as a Java Bridge, it must have a

properly functioning Java installation. Once Java is installed,the Platform installation installs

the required components for the Java Bridge, some of which are implemented in Java.

 J2EE Server - The Java-based enterprise that adds Platform will have its own application

servers. A J2EE Server is shown in the diagram as part of the Front Office. It can

communicate with any of the Platform Nodes that have Java installed on them and which are

defined in Java as legitimate accounts.

Zend Platform User Guide

222

Added Value

Platform’s Java Bridge supports a PHP-Java integration that benefits enterprises on both the business

and technical level.

Business Level Benefits:

 Companies with J2EE application servers can begin to realize the advantages PHP offers over

other Web-enablement languages, including: shortened development time, shortened time-

to-market, lower TCO (Total Cost of Ownership), etc.

 PHP-centric companies can take advantage of J2EE services that are not present in scripting

languages.

Technical Level Benefits:

 Platform’s PHP/Java Bridge provides the ability to interact with plain Java objects.

 Platform’s Java Bridge operates without the overhead of a JVM for each Apache process.

 Platform’s Java Bridge consumes a finite amount of memory, which is almost disproportional

to the amount of activity that’s going through it.

Operating and Configuring

This section describes procedures for operating and configuring the Java Bridge.

Configuring Run-time:

For running JavaMW, the following command can be used:

java com.zend.javamw.JavaServer

For correct execution, classpath should include javamw.jar file in the directory where JavaMW

is installed.

Example:

UNIX, Linux, i5/OS and Mac <install_dir>/bin/javamw.jar

Windows <install_dir>\bin\javamw.jar

Zend Platform

223

Java Status Page

The Java Bridge tab provides status information about the Java servers connected to the network. The

information displayed in the Java Status page, shows information about a selected server.

To access the Java Bridge tab go to Integration | Java Bridge.

The active buttons on the Java Status page are:

 Stop - Shuts down the Java Bridge daemon.

 Start/Restart - Restarts the Java Bridge daemon.

 Refresh - Refreshes the page for the selected server.

 Help - Opens the Online Help for the Platform Java Bridge.

OS Compatibility Note:

- Windows all supported versions should use the service manager to Start and Stop services

(Start/Stop options in the Tab will not be available).

- FreeBSD - The Java Bridge is currently not available.

The Java Status page includes information about:

 Java Environment - The Java Environment includes the Java Version, Java Vendor, OS

Name, OS Version, Class Path and Java Home

 Bridge Statistics - Bridge Statistics information includes the Number of connections and

Requests.

• Number of connections - The accumulated number of processes holding a connection to the

Java Bridge server (the full amount).

• Number of Requests - The number of 'worker threads' available for processing requests to

the Java server.

Note:

The Java Bridge requires that you have SUN’s JRE 1.4 or later or IBM's Java 1.4.2 or later installed on

your computer. While installing Platform you were prompted to direct the installer to the JRE’s

location. Therefore, you should already have JRE installed. If you did not choose to setup the Java

Bridge in the installation process you can do so after the installation using the Setup Tool (from

UNIX, Linux and Mac: <install_dir>/bin/setup_tool.sh from i5/OS: GO ZENDPLAT/ZPMENU from

Windows: Start | Programs | Zend Platform | Setup Tool).

More information about JRE’s and the latest updates can be obtained from SUN Microsystems’s

website: http://java.sun.com.

Zend Platform User Guide

224

Working with the Java Bridge User Interface

To view the Java Status Page for a selected server:

Figure: Select Server to Configure

1. Go to the Java Bridge tab and the "Select Server to Configure" dialog opens.

2. Select a server from the list of servers in the Server Tree and click "OK".

The Java Status Page opens for the selected server.

Figure: Java Status Page

Note:

Statistical information is gathered on the Java server. Therefore, even after restarting the Web server,

the statistics are maintained. This naturally does not apply to restarting the Java server, which will

restart the statistics collection from zero.

Zend Platform

225

Using the command buttons provided on the Java Bridge user interface, you can stop the Java Bridge,

start the Java Bridge, or refresh the Status Information shown on-screen, for the selected server.

To stop the Java Bridge:

1. Click "Stop".

Platform opens an information screen that tells you that the Java Bridge was

successfully stopped.

2. Click "OK" to close the window.

Platform closes the window and returns to the Java Bridge main screen.

Configuring the Java Bridge

Zend Platform’s Java module has two configuration parameters:

 zend.javamw.threads - Specifies how many worker threads the server is using; allowing

this number of concurrent requests to be executed. The default value is 20.

 zend.javamw.port - Specifies the TCP port on which the server is listening. The default

value is 10001.

Example Script

The following example is the shell script for running JavaMW (this script should be customized when

necessary):

export CLASSPATH=$CLASSPATH:`pwd`/javamw.jar

java -Dzend.javamw.threads=20 -Dzend.javamw.port=10001 com.zend.javamw.JavaServer

Note:

Add other entries into CLASSPATH if you use non-standard Java packages.

PHP Configuration

The PHP module uses the following configuration directives:

 java.server_port - Specifies the TCP port on which the server is listening. The default value

is 10001.

Note:

This must be the same as zend.javamw.port for the server.

 Java.ints_are_longs - converts PHP’s integer to Java’s java.lang.Long. By default and if

this option is off, the PHP’s integers are converted to java.lang.Integer.

Zend Platform User Guide

226

Common Tasks

This section describes some of the common uses for the Java Bridge. The usage scenarios and

examples discussed here provide a framework for the Java Bridge’s uses, rather than a complete

picture. Real world experience indicates that companies are finding more and more applications for

the Java Bridge, beyond what was initially anticipated.

Usage Scenarios

There are two usage scenarios that describe the most common applications for Platform’s PHP/Java

Bridge:

 Integration with Existing Java Infrastructure - PHP is a fully featured scripting language

engineered to cover virtually all of an enterprise’s requirements. At the same time, many

enterprises have a long history of application development in Java. Platform’s Java Bridge

enables enterprises to keep on using their Java infrastructure - applications, databases,

business logic, and various Java servers (WebLogic, JBoss, Oracle Application Server, etc.)

 Accessing Java Language and Architecture - Some enterprises require the full set of

PHP’s capabilities, yet have a specific need for select Java based applications. SIP signaling in

the communications industry or JDBC for creating connectivity to SQL databases are two

examples of impressive, industry specific products. Platform’s Java Bridge enables

enterprises to adopt a PHP standard and to use their preferred Java based applications.

Activities

This section describes two sample activities that indicate some of what you can do with Platform’s

PHP/Java Bridge. In the sample activities, it is important to differentiate between Java and J2EE. The

difference will impact on architecture, and in turn, on the script code.

The important differences are:

 Java is a programming language. Java applications created in Java for the enterprise are not

bound to a specific framework. Therefore, it is possible and perhaps preferable for an

enterprise to relocate code libraries to a Zend Platform node.

 J2EE is a structured framework for application scripts developed for J2EE. It is preferable that

J2EE servers be left intact. (See the Zend Platform System Diagram above.)

Example 1: Typical Code

The code sample below is a functional example-you can run it! The example demonstrates the

interaction between the PHP application and Java objects that occurs in the Java Bridge

implementation.

Example:

<?

// create Java object

 $formatter = new Java("java.text.SimpleDateFormat",

 "EEEE, MMMM dd, yyyy 'at' h:mm:ss a zzzz");

 // Print date through the object

 print $formatter->format(new Java("java.util.Date"))."\n";

 // You can also access Java system classes

 $system = new Java("java.lang.System");

 print $system."\n"; // will use toString in PHP5

Zend Platform

227

 print "Java version=".$system->getProperty("java.version")."
\n";

 print "Java vendor=".$system->getProperty("java.vendor")." <p>\n\n";

 print "OS=".$system->getProperty("os.name")." ".

 $system->getProperty("os.version")." on ".

 $system->getProperty("os.arch")."
\n";

?>

The example code can be understood as follows:

1. The code example is written in PHP and forms part of a PHP Web application.

2. The PHP code creates the Java object-"java.lang.System"-which is the PHP proxy.

3. The purpose of the PHP code is to print the date and system information; however, it does so

through the Java object.

Example 2: A Case Study Java Bridge Performance

The Forever Times newspaper maintains a PHP-based Website-let’s call it ForeverOnline.com. The

newspaper has been searching for a real-time Stock Ticker application to add to their already

successful and heavily visited Website. The Forever Times Newspaper feels that real-time financial

information is the one thing their web site is lacking.

Forever Times believes they have found exactly the Stock Ticker application they need. The

application provides up-to-date quotations from all the major markets, currency rates, and even links

to some of the local exchanges. However, the application is written in Java and uses existing Java

libraries.

Forever Times realizes that a PHP based Web implementation that handles Java requests-a Java

Bridge-is their best bet. At the same time, they are concerned that the performance of their Website

remains optimal. To Forever Times’ horror, in testing the new application, they found that loading the

site with user-requests for the stock ticker slows down the performance of the whole Website.

The following code example illustrates how Platform’s Java Bridge applies to this business scenario

and others like it:

Example:

<?

// create Java object

$stock = new Java("com.ticker.JavaStock");

// call the object

$news = $stock->get_news($_GET['ticker']);

// display results

foreach($news as $news_item) {

print "$news_item
\n";

}

?>

The example code can be understood as follows:

 The code example is written in PHP and forms part of a PHP Web application.

 The PHP code creates the Java object-"com.ticker.JavaStock"-which is the PHP proxy.

 Requests come into the PHP based Website - ForeverOnline.com - which then references the

Stock Ticker application.

 Stock Ticker references a custom object- get_news-in the JVM library. This is all in native

Java.

Zend Platform User Guide

228

 The PHP code then outputs the results on the Website.

The Typical Java Bridge Implementation and the Platform’s Java Bridge Implementation diagrams

below show how Forever Times’ concern about performance is addressed, through the Java Bridge

architecture. The diagrams focus on how problems in scalability arise in a typical Java Bridge

Implementation.

Figure: Typical Java Bridge Implementation

The Java Bridge Implementation diagram shows how scalability issues are addressed in the Java

Bridge.

Figure: Zend Platform’s Java Bridge Implementation

Note:

While the single JVM constitutes a single point of failure, the fact is Zend’s PHP-Java connection is the

most robust on the market. Failures in systems of this type generally tend to occur when the Java

Server is overloaded, rather than as a result of glitches in the applications. Platform’s system

architecture insures performance by diminishing overhead. However, in the event of failure, the Java

Bridge supports a Restart feature that makes monitoring the status of the Java Server and restarting

quick and simple. One last point: if the failure was caused by a glitch in the application, the same

thing would most likely occur in each of the JVMs in the non-Zend system!

Zend Platform

229

Example 3: Case Study in Management Integration

A company called FlowerPwr.com, sells flowers over the Internet. They are a successful East coast

based firm that has an aggressive management profile. They are currently in the process of acquiring

a West coast competitor-let’s call it Yourflowers.com-that provides a similar service.

FlowerPwr.com has its own website, and its various enterprise applications were written in PHP.

Yourflowers.com has its own Website, however all its applications are Java based and were developed

for J2EE. They have their own J2EE application server. FlowerPwr.com needs to begin operating as an

integrated commercial entity as soon as possible in a way that conceals the fact that the companies

have merged.

Platform’s Java Bridge offers a solution. Using Zend Platform, FlowerPwr.com can create a common

portal in PHP. The company can leave Java up and running and take full advantage of their

acquisition’s existing Java services. FlowerPwr.com can do this over an existing portal using PHP.

The following code example illustrates how Platform’s Java Bridge can apply to this business scenario

and others like it:

Example:

<?

// EJB configuration for JBoss. Other servers may need other settings.

// Note that CLASSPATH should contain these classes

$envt = array(

"java.naming.factory.initial" => "org.jnp.interfaces.NamingContextFactory",

"java.naming.factory.url.pkgs" => "org.jboss.naming:org.jnp.interfaces",

"java.naming.provider.url" => " jnp://yourflowers.com:1099");

$ctx = new Java("javax.naming.InitialContext", $envt);

// Try to find the object

$obj = $ctx->lookup("YourflowersBean");

// here we find an object - no error handling in this example

$rmi = new Java("javax.rmi.PortableRemoteObject");

$home = $rmi->narrow($obj, new Java("com.yourflowers.StoreHome"));

$store = $home->create();

// add an order to the bean

$store->place_order($_GET['client_id'], $_GET['item_id']);

print "Order placed.
Current shopping cart:
";

// get shopping cart data from the bean

$cart = $store->get_cart($_GET['client_id']);

foreach($cart as $item) {

print "$item['name']: $item['count'] at $item['price']
\n";

}

// release the object

$store->remove();

?>

Zend Platform User Guide

230

The example code can be understood as follows:

1. The code example is written in PHP and forms part of a PHP Web application.

2. The PHP application first initializes an operation with the EJB, located at a specific URL that

has the name:"//yourflowers.com:1099."

3. The code then specifies the bean-YourflowersBean-that the application will look for.

4. Next, the bean object is returned from the EJB server.

5. The application then calls methods-in this case, the Java application includes two functions:

• place_order receiving two numbers - client ID and the item ID to add to shopping

cart

• get_cart receiving one number - client ID and returning the list of the items placed

in the shopping cart so far.

After script execution the referenced class may be disposed.

Zend Platform

231

Usability Issues

The Java Bridge’s PHP 4 module has a number of usability issues compared to native Java code, which

stem from the limitations imposed by the PHP 4 language. Most of these limitations do not exist in

PHP 5 and those that do will be mentioned as such.

Chain Functions Call

In pure Java, you can program the following chain function:

result = object.Method1().Method2().Method3();

In this example, the result of one method becomes the object for another method. PHP 4’s Java

module, however, does not allow you to write a chain function in a similar way, as per example:

$result = $java_object->Method1()->Method2()->Method3();

This is due to the fact that PHP 4 disallows chaining method calls. Instead, a chain function must be

expressed as follows:

$result1 = $java_object->Method1();

$result2 = $result1->Method2();

$result = $result2->Method3();

Note:

In PHP 5, you can use chaining.

Exceptions

Since PHP 4 has no concept of exception, you may not include Java exceptions in your PHP code.

However, you can use functions to deal with exceptions.

java_exception_get:

http://www.zend.com/manual/function.java-last-exception-get.php

java_last_exception_clear:

http://www.zend.com/manual/function.java-last-exception-clear.php

PHP 5 has a concept of exceptions and therefore can handle Java exceptions and translate them into

PHP exceptions.

The following examples display the different exception scenarios and what they look like:

How Exceptions Work:

In this example exceptions are inherited from an exception class.

Example:

<?

try {

 $stack=new Java("java.util.Stack");

 $stack->push(1);

 $result = $stack->pop();

 print "$result\n";

 $result=$stack->pop();

} catch(Exception $ex) {

 print "Exception in pop: ";

 print $ex->getCause()->toString();

 print "\n";

}

?>

Zend Platform User Guide

232

Caught Exceptions:

This example shows what an exception looks like when a Java Code exception is caught. This is an

example of a typical exception that will appear instead of the expected PHP output when specified in

the code i.e using print_r ($exception) or var_dump ($exception).

Example:

JavaException Object

(

 [message:protected] => Java Exception java.util.EmptyStackException:

java.util.EmptyStackException

 at java.util.Stack.peek(Stack.java:79)

 at java.util.Stack.pop(Stack.java:61)

 [string:private] =>

 [code:protected] => 0

 [file:protected] => /vector.php

 [line:protected] => 7

 [trace:private] => Array

 (

 [0] => Array

 (

 [file] => /vector.php

 [line] => 7

 [function] => pop

 [class] => java.util.Stack

 [type] => ->

 [args] => Array

 (

)

)

)

 [javaException] => java.util.EmptyStackException Object

)

Zend Platform

233

Uncaught Exceptions:

Uncaught exceptions are also reported but because they lack an immediate relation to a specific

exception class they are less detailed and can only indicate basic details regarding the occurrence of

an exception. This type of exception typically appears in your error log or wherever you have defined

your php.ini to store errors.

Note:

Please refer to the PHP manual for more information regarding the php.ini eror reporting definitions.

Example:

Fatal error: Uncaught exception 'JavaException' with message 'Java

Exception java.util.EmptyStackException:

java.util.EmptyStackException

 at java.util.Stack.peek(Stack.java:79)

 at java.util.Stack.pop(Stack.java:61)

' in /vector.php:7

Stack trace:

#0 /vector.php(7): java.util.Stack->pop()

#1 {main}

 thrown in /vector.php on line 7

Java Array/Hashtable Objects

In PHP, arrays and hashtables are used interchangeably. This is because in PHP hashtables are

indexed by integers or strings-not by objects. In Java, the key and value must be objects to be

associated, so primitive types have to be converted to objects first, before parsing.

In Zend Platform’s Java interface, if a method returns array/hashtable, it is immediately translated

into a PHP native array/hashtable type. This means that if you want to work with a Java array/hash

from PHP you cannot preserve it as a Java object. Of course, the contents are preserved, but the

object identity is lost. In such a case, when an array/hash is returned, you will lose the ability to use

Java methods since the array/hash loses the object identity and becomes a regular PHP array.

There are several ways to handle Java arrays and hashtable descendants. The following example

shows a possible scenario of how Java arrays and hashtable descendants can be converted into PHP

arrays by splitting the class pattern method and returning an array of strings which is then converted

into a PHP array as follows:

Example:

<?

$exp = new Java("java.util.regex.Pattern");

$p = $exp->compile(":+"); // Create new patten object

$arr = $p->split("a::b:c:::d:e"); // Use pattern to split string into array

print_r($arr);

?>

To deal with Array/Hashtable objects originating in Java:

Implement the code dealing with the array in Java and then call it from PHP, or encapsulate the object

in a different class.

Zend Platform User Guide

234

Iterators

Iterators are not handled by the Java Bridge in any special way and they are treated like any other

Java object.

Zend Platform

235

BIRT Reports
Contents:

BIRT Reports Tab

Setting-Up the BIRT Report Engine

BIRT Report Examples

Advanced reporting capabilities, have been integrated into Platform, to provide enterprise users with

expandable reporting functionality. Actuate's reporting application is the chosen application. Together

with the Java Bridge it can extract reports from Java libraries and generate reports on any

information. This solution is essentially a PHP API to the Actuate BIRT 2.1.1 run time environment that

supports both PHP 4 and PHP 5.

To access the BIRT Reports tab go to: Integration | BIRT Reports.

The BIRT reporting framework was developed by Actuate as a project under the eclipse foundation.

The BIRT reporting system is a Java reporting tool for building and publishing reports against data

sources ranging from typical business SQL databases, to XML data sources, to in-memory Java

objects.

Types of reports that can be generated:

 Lists that include sorts, groups, totals, top N reports, averages and summaries

 Statements, invoices, documents, letters, forms and other business correspondence

 Charts including pies, lines, bars, gauges and many more formats

Actuate BIRT reports can combine text, images, rules, charts, tables and other elements in a single

document or web page. Actuate BIRT also provides extensive support for the language needs of global

application deployment. Using Actuate BIRT, a single report can display strings in various languages

and can adapt date and numeric formatting and item widths to global languages.

Using BIRT

Platform includes Actuate’s report run-time environment allowing users to run BIRT reports, directly

from Platform Administration. In addition, Studio includes the BIRT reports design interface (See the

Zend Studio Online Help for more about creating BIRT reports). Both components complement each

other in providing an overall solution for developing and creating business intelligence reports.

Zend Platform User Guide

236

BIRT Reports Tab

The BIRT Reports tab is a BIRT report demo page.

Through this tab, users can:

 View examples of BIRT reports.

 View exampled of the actual code.

Report Examples

The BIRT Reports tab includes four different examples of reports. These reports demonstrate different

types of reports that can be created. To view the generated output of a report click "Render this

code...".

The type of output you will see, depends on the output type defined in the code. The options are PDF

or HTML (For more about creating reports see BIRT API)

Report Code

When selecting a report, the display beneath the report selection section changes to show the actual

code of the selected report. This provides users with a detailed example of the makeup of reports

including the Rendering option that allows users to also view the code's output.

Zend Platform

237

Setting-Up the BIRT Report Engine

The Platform installer includes all the necessary components for rendering BIRT use-cases directly

from Platform Administration. These use cases demonstrate the reporting capabilities in terms output

types and the necessary functions used in order to gather and render the reports.

Assuming the Java Bridge component has already been setup, the BIRT use cases will work out-of-

the-box. The Java Bridge component is needed in order to support the interaction between the PHP

scripts and the BIRT reporting tool written in Java.

If while installing Platform, the option to setup the Java Bridge was not selected, the Setup Tool can

be deployed to setup the Java Bridge.

Using the Setup Tool to Setup the Java Bridge:

Access the Setup Tool, from UNIX, Linux and Mac: platform_dir/bin/setup_tool.sh from i5/OS: GO

ZENDPLAT/ZPMENU from Windows: Start | Programs | Zend Platform | Setup Tool.

Note:

The Java Bridge requires that you have SUN’s JRE 1.4 or later installed on your computer. More

information about JRE’s and the latest updates can be obtained from SUN Microsystems’s website:

http://java.sun.com.

If you are using IBM's Java use version 1.42 or later obtained from:

 http://www.ibm.com/developerworks/java/jdk

To enable the interaction between Platform and the BIRT reporting tool, first activate the Java Bridge,

by going to: Integration | Java Bridge and click "Start".

http://java.sun.com/
http://www.ibm.com/developerworks/java/jdk

Zend Platform User Guide

238

BIRT Report Examples

The following are the report examples set in the BIRT Reports Tab:

Note:

Please Refer to the sections on APIs and Directives for more details about BIRT integration.

Sales Invoice (html)

Prints an invoice for the selected order, including customer and invoice details and products ordered.

Demonstrates use of a parameter to select the order to invoice and expressions for several calculated

fields, including discount and order total. Uses expression to build customer address string and

illustrates suppression of nulls in database fields with javascript function replace. Also shows image

inclusion and sophisticated use of grids and tables to organize report content. Finally, the report

makes use of styles to simplify maintenance and achieve a consistent look.

<?php

2 // include Zend Birt report design API

3 require_once('Zend/Birt_Report/Zend_Birt_Report_Design.php');

5 // create report design object from rptdesign file

6 $birt = new Zend_Birt_Report_Design(dirname(__FILE__) . '/usecase1.rptdesign');

7

8 // set parameter sample, in this case:

9 // show only order number 10101

10 $birt->setParameter('OrderNumber','10102');

11

12 // "BIRT_TMP_DIR" represent a path to writable directory, while

"birtImage.php?image=" is

13 // a php script that display the image from its original location

14 $birt->setImageConfiguration(BIRT_TMP_DIR, 'birtImage.php?image=');

15

16 // render a report.

17 // BIRT_REPORT_FORMAT_HTML - render an html report

18 echo $birt->renderReport(BIRT_REPORT_FORMAT_HTML, false);

19 ?>

Zend Platform

239

Top Selling Products (embedded html)

This report uses a pie chart to show the revenue by product line. The chart lists the top selling

products, sorted by revenue. This example, demonstrates use of a chart and sorting a result set. Also

shows image inclusion and use of grid and tables to organize report content. Finally, the report makes

use of styles to simplify maintenance and achieve a consistent look.

 <html>

2 <head>

3 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

4 <title>Zend birt sample</title>

5 </head>

6 <body>

7 <div style="width:600px;margin:0 auto;">

8 <?php

9 // include Zend Birt report design API

10 require_once('Zend/Birt_Report/Zend_Birt_Report_Design.php');

12 // create report design object from rptdesign file

13 $birt = new Zend_Birt_Report_Design(dirname(__FILE__) .

'/usecase2.rptdesign');

14

15 // "$birt_tmp_directory" represent a path to writable directory, while

"birtImage.php?image=" is

16 // a php script that display the image from its original location

17 $birt->setImageConfiguration(BIRT_TMP_DIR, 'birtImage.php?image=');

20 // render html report embedded in html page

21 echo $birt->renderReport(BIRT_REPORT_FORMAT_HTML, true);

22 ?>

23 </div>

24 </body>

25 </html>

Zend Platform User Guide

240

Product Catalog (PDF)

This report prints the Classic Models product catalog, grouped by product category. The information is

sorted by, product name, cost and description. This example, demonstrates one level grouping and

using a grid within a table row to structure spacing. Also shows image inclusion and use of the tag in

text item to include the content of a database column. Finally, the report makes use of styles to

simplify maintenance and achieve a consistent look.

 <?php

2 // include Zend Birt report design API

3 require_once('Zend/Birt_Report/Zend_Birt_Report_Design.php');

4

5 // create report design object from rptdesign file

6 $birt = new Zend_Birt_Report_Design(dirname(__FILE__) . '/usecase3.rptdesign');

7

8

9 // render report to PDF file and save it on a temporary folder

10 if (!$birt->renderReportToFile(BIRT_REPORT_FORMAT_PDF, true, BIRT_TMP_DIR .

'/temp_report.pdf')) {

11 // display error if renering return false

12 echo $birt->getError();

13 } else {

14 // send pdf file to browser

15 // if function for zend_send_file

16 zend_send_file(BIRT_TMP_DIR . '/temp_report.pdf', 'pdf');

17 }

18 ?>

Zend Platform

241

Product Catalog (using caching)

This report prints the Classic Models product catalog, grouped by product category. The information is

displayed by, product name, cost and description. This example, demonstrates one level grouping and

using a grid within a table row to structure spacing. Also shows image inclusion and use of the tag in

text item to include the content of a database column. Finally, the report makes use of styles to

simplify maintenance and achieve a consistent look.

<?php

2 // include Zend Birt report design API

3 require_once('Zend/Birt_Report/Zend_Birt_Report_Design.php');

4 // include Zend Birt report document API

5 require_once('Zend/Birt_Report/Zend_Birt_Report_Document.php');

7 // create report design object from rptdesign file

8 $birt = new Zend_Birt_Report_Design(dirname(__FILE__) . '/usecase4.rptdesign');

10 // caching a report using report document file

11 // savng rptdoc file to a temporary folder

12 $rptdoc_cache_file = BIRT_TMP_DIR . '/temp.rptdoc';

13 if (!file_exists($rptdoc_file)) {

14 $birt_doc = $birt->generateReportDocument($rptdoc_cache_file);

15 } else {

16 $birt_doc = new Zend_Birt_Report_Document($rptdoc_cache_file);

17 }

18 if(!$birt_doc) {

19 die($birt->getError());

20 }

22 // "$birt_tmp_directory" represent a path to writable directory, while

"birtImage.php?image=" is

23 // a PHP script that displays the image from its original location

24 $birt_doc->setImageConfiguration(BIRT_TMP_DIR, 'birtImage.php?image=');

26 // rendering report from cache (rptdoc file) to output

27 $birt_doc->renderReportToOutput(BIRT_REPORT_FORMAT_HTML,false);

28 ?>

Zend Platform User Guide

242

Reference

Contents:

Zend Platform Built-In Services and Extensions APIs

Setup Tool Directives

Services Tutorials

Extensions Appendices

Useful Links

This page includes links to commonly used online reference information. This page can be used as a

bookmarks area for web links. If you have a resource that you would like to see in this area send a

mail to the Zend Documentation Team and the link will be added for the next version.

PHP Manual (English)- http://www.php.net/

Zend Framework - http://framework.zend.com/

Zend Devzone - http://devzone.zend.com/public/view

Zend Forums - http://www.zend.com/forums/

PHP Certification - http://www.zend.com/education/zend_php_certification

PHP Yellow Pages - http://www.zend.com/store/education/certification/yellow-pages.php

Support Center - http://www.zend.com/en/support-center/

Knowledge Base Search - http://www.zend.com/support/knowledgebase.php

mailto:documentation@zend.com
http://www.php.net/
http://www.php.net/
http://framework.zend.com/
http://framework.zend.com/
http://devzone.zend.com/public/view
http://devzone.zend.com/public/view
http://www.zend.com/forums/
http://www.zend.com/forums/
http://www.zend.com/education/zend_php_certification
http://www.zend.com/en/services/certification/
http://www.zend.com/store/education/certification/yellow-pages.php
http://www.zend.com/store/education/certification/yellow-pages.php
http://www.zend.com/en/support-center/
http://www.zend.com/en/support-center/
http://www.zend.com/support/knowledgebase.php
http://www.zend.com/support/knowledgebase.php

Zend Platform

243

Zend Platform Built-In Services and Extensions
Services are the backbone of Platform's production level features. To allow a wider control over the

production level features, in this chapter we will describe the different services used by Platform and

how they can be enabled and disabled.

Note:

Before disabling Services and removing extensions from your php.ini make sure you are aware of the

following dependences:

In Unix, Linux, i5/OS and Mac

A message will be added to the log indicating that an extension with dependences was disabled and

the implications of this action.

In Windows

'Zend Platform Job Queue' 'Zend Platform Pinger' and 'Zend Platform Collector Center' depend on

'Zend Platform MySQL'

'Zend Platform Action' depends on 'Zend Platform Collector Center'

Stopping a service will result in a message that all its dependants’ will be also stopped, for example

stopping ZPMySQL will display that ZPJobQ, ZPPinger, ZPCollector and ZPAction will be stopped.

Warning: Stopping ZPMySQl will disable the Administration User Interface for all operating systems.

Services are part of the installed package and in some situations are already running out of the box.

This is determined according to the chosen installation method. The Platform Installer has two types

of installation methods, Custom and Express. The Custom installation prompts users to decide which

services to run and the Express method only runs three essential components (PHP Extensions:

Optimizer, Download Server, Accelerator, Monitor, Zend Cache and Debugger).

Naturally, services only run according to selected license type. Therefore, Development and Enterprise

Licenses will include the Session Clustering, Job Queues and Java Bridge services. These services will

be applicable either when selected in the Custom installation or available from the Setup Tool, if not

selected in the Custom installation or after installing using the Express method.

Note:

If you are using Platform as a debugger (Remote Debugger) for use with Studio, the recommended

installation method is express. This will provide only the essential services for using the debugger.

Zend Platform User Guide

244

Setup Tool
The Setup Tool provides users with an easy way to activate services and change settings. The Setup

Tool also is a means to configure options that were not setup in the installation process.

Running the Setup Tool

The setup Tool is a separate component and resides outside the Platform user interface.

To run the Setup Tool:

In UNIX, Linux and Mac run /usr/local/Zend/Platform/bin/setup_tool.sh from the shell.

In i5/OS run: GO ZENDPLAT/ZPMENU in the i5/OS command line

In Windows go to the Start menu and select Programs | Zend Platform | Setup Tool (in Windows a

welcome screen will be displayed, choose the option "Modify" to access the configuration options).

The Setup Tool includes the following options:

1. Setup Session Clustering - Setup Session Clustering module.

2. Setup Java Bridge - The Java Bridge access Java based applications running in a Java

4. Setup Job-Queues - The Job Queues server services Job Queues

5. Register a Node - Register a server to belong to the Central server and be part of a cluster.

6. Change Platform Administration Password

Refer to the Installation Guide for more information about the Setup Tool.

Zend Platform

245

Services
The following section provides a complete description of each service along with instructions on how to

run and stop the services.

Java Bridge

Description Integrates Java libraries and classes within PHP applications.

To Enable Run the setup tool and select option number, 2 "Setup Java Bridge" and input the

required data.

To Disable In Unix, Linux and Mac: Execute:

/usr/local/Zend/Platform/bin/javamw.rc stop.

 In i5/OS Execute GO ZENDPLAT/ZPMENU option 2 and then option 3.

 In Windows: Go to Services (Start | Settings | Control Panel |

Administrative Tools | Services) and stop the service (double-click on the

service name and in the "Startup Type" field select the option "Disabled')

"Zend Platform Java Bridge", you can also run one of these commands in

the command line (Start | Run, enter CMD in the text area and press

enter to open the command line):

net stop ZPJava

or

net stop "Zend Platform Java Bridge"

*Quotes are mandatory.

To completely disable the Java Bridge, remove the directive

zend_extension_manager.java_bridge from the php.ini to prevent loading a

redundant shared object (in UNIX, linux i5/OC and Mac .so in Windows .dll).

Resulting

Outcome

If stopped, integration with Java libraries and classes within PHP applications will

be not be available.

Session Clustering

Description Session Clustering increases PHP application scalability.

To Enable Run the setup tool and select option number, 1 "Setup Session Clustering"

To Disable In Unix, Linux and Mac: Execute: /usr/local/Zend/Platform/bin/scd.sh

stop and the directives zend_extension_manager.mod_cluster and

session.save_handler=cluster from the php.ini to prevent loading a

redundant shared object (in Unix .so in Windows .dll).

 In Windows: Go to Services (Start | Settings | Control Panel |

Administrative Tools | Services) and stop the service (double-click on

the service name and in the "Startup Type" field select the option

"Disabled') "Zend Platform Session Clustering", you can also run one of

these commands in the command line (Start | Run, enter CMD in the

text area and press enter to open the command line):

Zend Platform User Guide

246

net stop ZPSC

or

net stop "Zend Platform Session Clustering"

*Quotes are mandatory.

To completely disable Session Clustering, remove the directives

zend_extension_manager.mod_cluster and session.save_handler=cluster from

the php.ini to prevent loading a redundant shared object (in Unix .so in

Windows .dll).

Resulting

Outcome

If stopped, the ability to make sessions accessible to all cluster members will

not be available.

Job Queues

Description Job Queues reroutes and delays the execution of processes and to improve

response times during interactive Web sessions.

To Enable Run the setup tool and select option number, 3 "Setup Job Queues".

To Disable In Unix, Linux and Mac: Execute: /usr/local/Zend/Platform/bin/jqd.sh

stop and remove the directive

zend_extension_manager.jobqueue_client from the php.ini to prevent

loading a redundant SO.

 In Windows: Go to Services (Start | Settings | Control Panel |

Administrative Tools | Services) and stop the service (double-click on

the service name and in the "Startup Type" field select the option

"Disabled') "Zend Platform Job Queues", you can also run one of these

commands in the command line (Start | Run, enter CMD in the text

area and press enter to open the command line):

net stop ZPJobQ

or

net stop "Zend Platform Job Queue"

*Quotes are mandatory.

To completely disable Job Queues, remove the directive

zend_extension_manager.jobqueue_client from the php.ini to prevent loading a

redundant shared object (in Unix .so in Windows .dll).

Resulting

Outcome

If stopped, the ability to reroute and delay execution of jobs will be disabled

(jobs that are already running will not be stopped).

Note:

To ensure the Java Bridge, Session Clustering and Job Queue services do not start again next time the

server is booted, erase the following:

1) Open /usr/local/Zend/Platform /etc/rc.d/, and remove these symbolic links:

- S10mysql.sh -> /usr/local/Zend/Platform/MySQL/bin/mysql.sh

- S20jqd.sh -> /usr/local/Zend/Platform/bin/jqd.sh

- S30scd.sh -> /usr/local/Zend/Platform/bin/scd.sh

- S40javamw.rc -> /usr/local/Zend/Platform/bin/javamw.rc

*Not all will appear depending on your configuration preferences.

Zend Platform

247

2) Delete platform_init.sh.

In Windows, open the Service Manager (Start | Settings | Control Panel | Administrative Tools |

Services and set them to Disabled.

When reactivating these services this information will be restored automatically.

Cache Cleaner

Description Cleans old files from the cache directory and maintains cache size below

the limits. It runs as a stand-alone background program (daemon), it

may be signaled by the user manually, or from the crontab, or from httpd

when the cleanup is needed.

To Enable Automatically configured during installation

To Disable In Unix, Linux Mac: Run the command:

#crontab -u $apache_user -e as root and remove the following

line:

"r;*/10 * * * * /usr/local/Zend/Platform/bin/cache_clean -l

/usr/local/Zend/Platform/etc/zend.ini &>/dev/null"

 In i5/OS Execute GO ZENDPLAT/ZPMENU option 2 and then

option 5.

 In Windows: Go to Services (Start | Settings | Control Panel |

Administrative Tools | Services) and stop the service (double-

click on the service name and in the "Startup Type" field select

the option "Disabled') "Zend Platform Cache Cleaner", you can

also run one of these commands in the command line (Start |

Run, enter CMD in the text area and press enter to open the

command line):

net stop ZPCache

or

net stop "Zend Platform Cache Cleaner"

*Quotes are mandatory.

Resulting Outcome This stand-alone background program cleans the cache directory from old

files and maintains cache size below the limits. Deactivating it should

only be done in the event you choose not to use Platform's caching

abilities.

Collector Center

Description Collects PHP events for PHP Intelligence.

To Enable Automatically configured during central installation. In Windows the node

collector service (that is part of the four collector services) is also installed

in the Node installation.

To Disable In Unix, Linux and Mac: Run the command:

#crontab -u $apache_user -e as root and remove the following

line:

*/2 * * * * /usr/local/Zend/Platform/bin/collector_center

Zend Platform User Guide

248

/usr/local/Zend/Platform/etc -D

 In i5/OS Execute GO ZENDPLAT/ZPMENU option 2 and then

option 2.

 In Windows: Go to Services (Start | Settings | Control Panel |

Administrative Tools | Services) and stop the services (double-

click on the service name and in the "Startup Type" field select

the option "Disabled') "Zend Platform Action", "Zend Platform

Pinger" "Zend Platform Collector Center" "Zend Platform Node

Collector" you can also run one of these commands in the

command line (Start | Run, enter CMD in the text area and press

enter to open the command line):

net stop ZPAction

net stop ZPPinger

net stop ZPCollector

net stop ZPNodeCollector

or

net stop ”r;Zend Platform Action”

net stop ”r;Zend Platform Pinger”

net stop ”r;Zend Platform Collector Center”

net stop ”r;Zend Platform Node Collector”

*Quotes are mandatory.

Resulting

Outcome

If deactivated, PHP events will not be captured. This should be done in the

event you do not wish to utilize PHP Intelligence's monitoring abilities.

Zend Platform

249

Extensions
Platform extensions provide additional functionality. In order to disable an extension, open you php.ini

with a text editor and remove the extension lines (if present) or in Windows go to Services (Start |

Settings | Control Panel | Administrative Tools | Services) and stop the service (double-click on the

service name and in the "Startup Type" field select the option "Disabled'):

zend_extension_manager.optimizer

Description Controls the Zend Optimizer component.

To Enable Automatically configured during installation.

To Disable Remove the line from your php.ini

Resulting

Outcome

PHP code will not be optimized and files encoded with Guard will not run.

Users may notice a decrease in performance after disabling the Optimizer.

zend_extension_manager.download_server (not applicable in Windows)

Description Controls the Zend download server component.

To Enable Automatically configured during installation.

To Disable Remove the line from your php.ini

Resulting

Outcome

Files defined in the mime_types file will not be serviced by the download

server and will start consuming additional bandwidth.

zend_extension_manager.platform

Description platform.so or platform.dll (in Windows) includes the components;

Accelerator and Zend Cache.

To Enable Automatically configured during installation.

To Disable Remove the line from your php.ini

Resulting

Outcome

Disables Acceleration and Caching.

zend_extension_manager.monitor

Description monitor.so or monitor.dll (in Windows) includes the monitoring

component.

To Enable Automatically configured during installation.

To Disable Remove the line from your php.ini

Resulting

Outcome

Disables Monitoring (PHP Intelligence).

Zend Platform User Guide

250

Zend Platform Action (Windows Only)

Description Checks if there are actions associated with an Event when an Event is

added to the DB and executes them.

To Enable Automatically configured during installation.

To Disable Remove the line from your php.ini

Resulting

Outcome

Actions associated with events will not be executed.

Zend Platform Pinger (Windows Only)

Description This process periodically makes a query to nodes to verify activity and

status (OS, PHP version, etc.)

To Enable Automatically configured during installation.

To Disable Remove the line from your php.ini

Resulting

Outcome

Nodes will not be checked for activity and status and should be manually

checked.

Zend Platform Collector Center

Description Collects and aggregates information from nodes in the cluster that is

displayed in the PHP Intelligence module.

To Enable Automatically configured during installation.

To Disable Remove the line from your php.ini

Resulting

Outcome

Event information will not be collected from Nodes, this is equivalent to

disabling the cluster configuration and deactivating PHP intelligence

Zend Platform Node Collector

Description A daemon process that receives Events from Platform Nodes.

To Enable Automatically configured during installation.

To Disable Remove the line from your php.ini

Resulting

Outcome

Event information will not be collected from nodes, this is equivalent to

disabling the cluster configuration and deactivating PHP intelligence.

Zend Platform

251

Deprecated Caching APIs and Directives

Deprecated Functions

The Caching module has been upgraded and therefore the following partial page caching functions will

no longer be available in the next version.

Function Suggested Replacement*

output_cache_disable() NA

output_cache_fetch() NA

output_cache_output() NA

output_cache_remove_key zend_[shm|disk]_cache_delete

output_cache_put zend_[shm|disk]_cache_store

output_cache_get zend_[shm|disk]_cache_fetch

output_cache_exists NA

output_cache_stop NA

* The suggested replacements are not identical to the deprecated functions, please read their

descriptions before implementing them.

Deprecated Directives

The following directive will not be used in the next version:

zend_accelerator.php_api_lifetime

Zend Platform User Guide

252

APIs
Contents:

Accelerator Functions

Output Cache Functions - Deprecated

Zend Cache Functions - New

Full Page Caching Functions

Monitor Functions

ZDS Functions

Java Bridge Functions

Job Queue Functions

BIRT Report Functions

This chapter is a reference chapter for Platform APIs.

Zend Platform

253

Accelerator Functions

accelerator_set_status

void accelerator_set_status(bool status)

 Description: Disable/enable the Code Acceleration functionality at run time.

 Return Values: none

 Parameters: status - if false, Acceleration is disabled, if true - enabled

Output Cache Functions

Note:

These functions are deprecated

output_cache_disable()

 Description: Disables output caching for currently running scripts.

 Return Values: none

 Parameters: none

output_cache_fetch()

string output_cache_fetch(string key, string function, int lifetime)

 Description: Gets the code’s return value from the cache if it is there, if not - run function

and cache the value.

 Return Values: function's return

 Parameters: key - cache key, function - PHP expression, lifetime - data lifetime in cache

(seconds)

output_cache_output()

string output_cache_output(string key, string function, int lifetime)

 Description: If the cache for the key exists, output it, otherwise capture expression output,

cache and pass it out.

 Return Values: expression output

 Parameters: key - cache key, function - PHP expression, lifetime - data lifetime in cache

(seconds)

output_cache_remove_key

bool output_cache_remove_key(string key)

 Description: Remove item from PHP API cache by key

 Return Values: true if OK

 Parameters: key - cache key as given to output_cache_get/output_cache_put

output_cache_put

bool output_cache_put(string key, mixed data)

 Description: Puts data in cache according to the assigned key.

Zend Platform User Guide

254

 Return Values: true if OK

 Parameters: key - cache key, data - cached data (must not contain objects or resources)

output_cache_get

mixed output_cache_get(string key, int lifetime)

 Description: Gets cached data according to the assigned key.

 Return Values: cached data if cache exists, false otherwise

 Parameters: key - cache key, lifetime - cache validity time (seconds)

output_cache_exists

bool output_cache_exists(string key, int lifetime)

 Description: If data for assigned key exists, this function outputs it and returns a value of

true. If not, it starts capturing the output. To be used in pair with output_cache_stop.

 Return Values: true if cached data exists

 Parameters: key - cache key, lifetime - cache data validity time (seconds)

output_cache_stop

 Description: If output was captured by output_cache_exists, this function stops the output

capture and stores the data under the key that was given to output_cache_exists().

Zend Cache Functions

zend_[shm|disk]_cache_store

boolean zend_shm_cache_store(string [namespace::]key, mixed var [, int ttl])

boolean zend_disk_cache_store(string [namespace::]key, mixed var [, int ttl])

 Description: store var identified by key into the cache. If a namespace is provided, the key

is stored under that namespace. (Identical keys can exist under different namespaces)

 Return Value: FALSE when stored failed, TRUE otherwise

 Parameters:

key - the data's key. Possibly prefixed with namespace

var - can be any PHP object that can be serialized.

ttl - time to live in seconds. ZendCache keeps the objects in the cache as long as the TTL is

no expired, once expired it will be removed from the cache

zend_[shm|disk]_cache_fetch

mixed zend_shm_cache_fetch(string [namespace::]key)

mixed zend_disk_cache_fetch(string [namespace::]key)

 Description: fetch data from the cache. The key can be prefixed with a namespace to

indicate searching within this namespace only. If no namespace is provided, ZendCache

searches for the key in the global namespace

 Return Value: NULL when no data matching the key is found, else it returns the stored data

 Parameters:

key - the data's key. Possibly prefixed with namespace

Zend Platform

255

zend_[shm|disk]_cache_delete

boolean zend_disk_cache_delete(string [namespace::]key)

boolean zend_shm_cache_delete(string [namespace::]key)

 Description: find and delete an entry from the cache, using a key to identify it. The key can

be prefixed with a namespace to indicate deleting a key from within that namespace only. If

no namespace is provided, ZendCache searches for the key in the global namespace

 Return Value: TRUE on success, FALSE otherwise

 Parameters:

key - the data's key. Possibly prefixed with namespace

zend_[shm|disk]_cache_clear

bool zend_disk_cache_clear([string namespace])

bool zend_shm_cache_clear([string namespace])

 Description: delete all entries from the cache, from all namespace. If 'namespace' is

provided, delete all entries from that namespace only

 Return Value: TRUE on success, FALSE otherwise

 Parameters:

namespace - [optional] namespace to delete

Full Page Caching Functions

output_cache_disable_compression()

 Description: Does not allow the cache to perform compression on the output of the current

page. This output will not be compressed, even if the global settings would normally allow

compression on files of this type.

 Return Values: none

 Parameters: none

output_cache_remove

bool output_cache_remove(string filename)

 Description: Removes all the cache data for the given filename.

 Return Values: true if OK, false if something went wrong

 Parameters: filename - full script path on local file system

output_cache_remove_url

bool output_cache_remove_url(string url)

 Description: Remove cache data for the script with given URL (all dependent data is

removed)

 Return Values: true if OK

 Parameters: URL - the relative path for the script

Zend Platform User Guide

256

Monitor Functions

monitor_pass_error

void monitor_pass_error(integer $errno, string $errstr, string $errfile, integer $errline)

 Description: Should be called from a custom error handler to pass the error to the monitor.

The user function needs to accept two parameters: the error code, and a string describing

the error. Then there are two optional parameters that may be supplied: the filename in

which the error occurred and the line number in which the error occurred.

monitor_set_aggregation_hint

void monitor_set_aggregation_hint(string $hint)

 Description: Limited in the database to 255 chars, this API is a global variable that can be

set anywhere and in any hierarchy. The purpose of this API is to incorporate locations of

occurrences in the script. This API is used when there are events that require the location in

the script for diagnosing the reason behind the event occurring. For example: Global Events

require the application that generated the event. Adding the Hint API can assist in the

identification process. This string that is supplied by the user to differentiate between pages

that have the same URL but different parameters.

 Return Values: If the user did not supply a hint the default hint is an empty string.

 Parameters: $hint

monitor_custom_event

void monitor_custom_event(string $class, string $text[, integer $severe, mixed $user_data])

 Description: Custom Events are used to generate an event whenever the API function

monitor_custom_event() is called from the PHP script. This event type enables the

generation of an event on occurrences that are not necessarily built-in Platform events (error

and performance issues). Custom Events are used whenever you decide that it is significant

to generate an event in a certain situation. Each event type is given a name for easy

identification ($type).

 Parameters:

$class - helps to define several types of custom events. This description will be showed in

the PHP Intelligence, Event List and in the Event Details (report).

$text - error text used to describe the reason for the event. This text will appear in the

Event Details.

$severe - the severity level of the triggered event, default value is Severe.

$user_data - adds a PHP variable that will be viewed in the Event Details screen (in Event

Context-> Variables->User Defined). This forms the stored Event Context (similar to the

information obtained in a PHP error event).

Zend Platform

257

monitor_httperror_event

void monitor_httperror_event(integer $error_code, string $url [, bool $severe])

 Description: Create an HTTPERROR event

 Parameters:

$error_code - the http error code to be associated with this event

$url - the URL to be associated with this event

$severe - the severity of the event: 0 - not severe, 1 - severe

[edit]monitor_license_info

void monitor_license_info()

 Description: Returns an array containing information about:

1. Module loading status (and cause of error if module failed to load)

2. Module license status (and cause of error if license not valid)

register_event_handler

boolean register_event_handler($event_handler_func

[,$handler_register_name],$event_type_mask])

 Description: Allow you to register a user function as an event handler. When a monitor

event is triggered all the user event handler are called and the return value from the handler

is saved in an array keyed by the name the event handler was registered under. The event

handlers results array is saved in the event_extra_data table.

 Return Value: TRUE on success and FALSE if an error occurs.

 Parameters: The first argument is a callback function that will be call when the event is

triggered, object methods may also be invoked statically using this function by passing array

($objectname, $methodname) to the function parameter. The second (optional) argument is

name this function is registered under - if none is supplied, the function will be registered

under it's own name. The third (optional) parameter is a mask of event types that the

handler should be called on by default it's set to MONITOR_EVENT_ALL.

unregister_event_handler

boolean unregister_event_handler(string handler_name)

 Description: Allow you to un-register an event handler.

 Return Value: TRUE on success and FALSE if no handler we registered under the given

name.

 Parameters: string handler_name - the name you registered with the handler you now wish

to un-register.

Zend Platform User Guide

258

ZDS Functions

zend_send_file

bool zend_send_file(string filename[, string mime_type])

 Description: Send a file using ZDS

 Return Value: Returns FALSE if sending the file failed (does not return otherwise).

 Parameters:

filename - path to the file.

mime_type - MIME type of the file, if omitted, it will be taken from the configured MIME

types file.

custom_headers - user defined headers that will be sent instead of regular ZDS headers. A

few essential headers will be sent anyway.

zend-send_buffer

bool zend_send_file(string buffer[, string mime_type][, string custom_headers])

 Description: Send a file using ZDS

 Return Value: Returns FALSE if sending the file failed (does not return otherwise).

 Parameters:

buffer - the content that will be sent.

mime_type - MIME type of the file, if omitted, it will be taken from the configured MIME

types file.

custom_headers - user defined headers that will be sent instead of regular ZDS headers. A

few essential headers will be sent anyway.

Note:

The ZDS is not currently supported in Windows.

Zend Platform

259

Java Bridge Functions

java_last_exception_get

object java_last_exception_get()

 Description: Returns a Java exception object for the last exception

 Return Value: Java Exception object, if there was an exception, false otherwise

java_last_exception_clear

void java_last_exception_clear()

 Description: Clear last Java exception object record.

java_set_ignore_case

void java_set_ignore_case(bool ignore)

 Description: Set case sensitivity for Java calls.

 Parameters:

ignore - if set, Java attribute and method names would be resolved disregarding case.

NOTE: this does not make any Java functions case insensitive, just things like $foo->bar and

$foo->bar() would match Bar too.

java_set_encoding

array java_set_encoding(string encoding)

 Description: Set encoding for strings received by Java from PHP. Default is UTF-8.

java_throw_exceptions

void java_throw_exceptions(int throw)

 Description: Control if exceptions are thrown on Java exception. Only for PHP5.

 Parameters:

throw - If true, PHP exception is thrown when Java exception happens. If set to false, use

java_last_exception_get() to check for exception.

java_require

void java_require(string path)

 Description: include an additional classpath/JAR in the context of a PHP script

 Parameters:

URL pointing to the location of the Jar file. The function accepts the following protocols:

https://, http:// file://, ftp:// and it can also be a local path e.g. c:\.

Zend Platform User Guide

260

Job Queue Functions

A Queue of Job is described using the JobQueue class, when you want to manage a queue (or add

more than one job to it) you should instantiate a JobQueue object.

The JobQueue object enables several job control functions such as: add/remove/suspend/resume, and

some manage/info queue functions like: getJobsInQueue, getHistory, getStatistics etc.

A job is described by a Job class, whenever you want to add/update a job you can handle the Job

object using the Job methods.

After a job is in the queue, you can retrieve it to change remove or suspend the Job by using the job

id (the job id is assigned when a Job is added to the queue or by querying the jobs in the queue)

To add one job to a queue, for simplicity of usage, you can create the Job object (with it's required

attributes) and then add the job directly from the Job object (without instantiating the JobQueue

object), using the Job::addJob() function.

To change a Job's attributes, first get it from the queue (JobQueue::getJob() function), change the

attributes and then update the queue with the changed Job object (JobQueue::updateJob() functions).

Global Functions and Constants

Constants for Job statuses

define('JOB_QUEUE_STATUS_SUCCESS', 1); Job was processed and succeeded

define('JOB_QUEUE_STATUS_WAITING', 2);

Job is waiting to be processed (was

not scheduled)

define('JOB_QUEUE_STATUS_SUSPENDED', 3); Job was suspended

define('JOB_QUEUE_STATUS_SCHEDULED', 4); Job is scheduled and waiting in queue

define('JOB_QUEUE_STATUS_WAITING_PREDECESSOR',

5);

Job is waiting for it's predecessor to

be completed

define('JOB_QUEUE_STATUS_IN_PROCESS', 6); Job is in process in Queue

define('JOB_QUEUE_STATUS_EXECUTION_FAILED', 7);

Job execution failed in the

ZendEnabler

define('JOB_QUEUE_STATUS_LOGICALLY_FAILED', 8); Job was processed and failed logically

either because of job_fail command or

script parse or fatal error

Constants for different priorities of jobs

define('JOB_QUEUE_PRIORITY_LOW', 0);

define('JOB_QUEUE_PRIORITY_NORMAL', 1);

define('JOB_QUEUE_PRIORITY_HIGH', 2);

define('JOB_QUEUE_PRIORITY_URGENT', 3);

Constants for saving global variable's bit mask

define('JOB_QUEUE_SAVE_POST', 1);

define('JOB_QUEUE_SAVE_GET', 2);

define('JOB_QUEUE_SAVE_COOKIE', 4);

define('JOB_QUEUE_SAVE_SESSION', 8);

define('JOB_QUEUE_SAVE_RAW_POST', 16);

define('JOB_QUEUE_SAVE_SERVER', 32);

define('JOB_QUEUE_SAVE_FILES', 64);

Zend Platform

261

define('JOB_QUEUE_SAVE_ENV', 128);

set_job_failed

set_job_failed($error_string);

 Description: Causes a job to fail logically. It can be used to indicate an error in the script

logic (e.g. database connection problem).

 Parameters: @param string $error_string the error string to display

jobqueue_license_info

jobqueue_license_info();

 Description: returns an array containing following fields:

"license_ok" - whether license allows use of JobQueue

"expires" - license expiration date

Queue Class

class ZendAPI_Queue {

var $_jobqueue_url;

Queue Class Functions

zendapi_queue($queue_url) {}

Constructor for a job queue connection

 @param string $jobqueue_url - Full address where the queue is, in the form host:port

 @return zendapi_queue - object

login($password, $application_id=null) {}

Opens a connection to a job queue

 @param string $password - for authentication, password must be specified to connect to a

queue

 @param int $application_id - optional, if set, all subsequent calls to job related methods will

use this application id (unless explicitly specified otherwise). I.e. When adding new job,

unless this job already set an application id, the job will be assigned the queue application id

 @return bool - success

addJob(&$job) {}

Insert a new job to the queue, the Job is passed by reference because its new job ID and status will

be set in the Job object

 @param Job $job - the Job we want to insert to the queue (by ref.)

 @return int - the inserted job id

getJob($job_id) {}

Returns a Job object describing a job in the queue

 @param int $job_id - the job id

 @return Job Object - describing a job in the queue

updateJob(&$job) {}

Updates an existing job in the queue with it's new properties. If job doesn't exist, a new job will be

added. Job is passed by reference and it's updated from the queue.

Zend Platform User Guide

262

 @param Job $job - the Job object, the ID of the given job is the id of the job we try to

update. If the given Job doesn't have an assigned ID, a new job will be added

 @return int - the id of the updated job

suspendJob($job_id) {}

Removes a job from the queue

 @param int|array $job_id - the job id or array of job ids we want to remove from the queue

 function removeJob($job_id) {} - suspend a job in the queue (without removing it)

 @param int|array $job_id - the job id or array of job ids we want to suspend

 @return bool - success/failure

resumeJob($job_id) {}

Resume a suspended job in the queue

 @param int|array $job_id - the job id or array of job ids we want to resume

 @return bool - success/failure (if the job wasn't suspended, the function will return false)

requeueJob($job) {}

Re-queue failed job back to the queue.

 @param job $job - job object to re-queue

 @return bool - true or false.

getStatistics() {}

returns job statistics

 @return array with the following:

• "total_complete_jobs"

• "total_incomplete_jobs"

• "average_time_in_queue" [msec]

• "average_waiting_time" [sec]

• "added_jobs_in_window"

• "activated_jobs_in_window"

• "completed_jobs_in_window"

 moving window size can be set through the ini file

isScriptExists($path) {}

Returns whether a script exists in the document root

 @param string $path - relative script path

 @return bool - TRUE if script exists in the document root FALSE otherwise

isSuspend() {}

Returns whether the queue is suspended

 @return bool - TRUE if job is suspended FALSE otherwise

getJobsInQueue($filter_options=null, $max_jobs=-1, $with_globals_and_output=false) {}

Returns a list of jobs in the queue according to the options given in the filter_options parameter,

doesn't return jobs in "final states" (failed, complete). If the application id is set for this queue, only

jobs with this application id will be returned.

Zend Platform

263

 @param array $filter_options - array of optional filter options to filter the jobs we want to get

from the queue. If not set, all jobs will be returned. Options can be: priority, application_id,

name, status, recurring.

 @param int max_jobs - maximum jobs to retrieve. Default is -1, getting all jobs available.

 @param bool with_globals_and_output - whether to get the global variables data and job

output. Default is false.

 @return array - Jobs that satisfies filter_options.

getNumOfJobsInQueue($filter_options=null) {}

Returns a list of jobs in the queue according to the options given in the filter_options parameter

If application id is set for this queue, only jobs with this application id will be returned

 @param array $filter_options - array of optional filter options to filter the jobs we want to get

from the queue. If not set, all jobs will be returned. Options can be: priority, application_id,

host, name, status, recurring.

 @return int - number of jobs that satisfies filter_options.

getAllhosts() {}

Return all the hosts that jobs were submitted from @return array.

getAllApplicationIDs() {}

Return all the application ids exists in queue @return array.

getHistoricJobs($status, $start_time, $end_time, $index, $count, &$total) {}

Return finished jobs (either failed or successes) between time range allowing paging.

Jobs are sorted by job id descending.

 @param int $status - filter to jobs by status, 1-success, 0-failed either logical or execution.

 @param UNIX timestamp $start_time - get only jobs finished after $start_time.

 @param UNIX timestamp $end_time - get only jobs finished before $end_time.

 @param int $index - get jobs starting from the $index-th place.

 @param int $count - get only $count jobs.

 @param int $total - pass by reference. Return the total number of jobs satisfied the query

criteria.

 @return array of jobs.

suspendQueue() {}

Suspends queue operation

 @return bool - TRUE if successful FALSE otherwise

resumeQueue() {}

Resumes queue operation

 @return bool - TRUE if successful FALSE otherwise.

getLastError() {}

Returns a description of the last error that occurred in the queue object. After every method invoked

an error string describing the error is stored in the queue object.

 @return string.

setMaxHistoryTime() {}

Zend Platform User Guide

264

Sets a new maximum time for keeping historic jobs.

 @return bool - TRUE if successful FALSE otherwise

Job Class

This class describes a job in a queue

In order to add/modify a job in the queue, a Job class must be created, retrieved and than saved in a

queue or, a job can be added directly to a queue without creating an instant of a Queue object.

class ZendAPI_Job {

var $_id;

 Description: Unique id of the Job in the job queue.

 @var int

var $_script;

 Description: Full path of the script that this job calls when it's processed.

 @var string

var $_host;

 Description: The host from where the job was submitted.

 @var string

var $_name;

 Description: A short string describing the job.

 @var string

var $_output;

 Description: The job output after executing.

 @var string

var $_status = JOB_QUEUE_STATUS_WAITING;

 Description: The status of the job, by default, the job status is waiting to being executed.

The status is determined by the queue and can not be modified by the user.

 @var int

var $_application_id = null;

 Description: The application id of the job. If the application id is not set, this job may get an

application id automatically from the queue (if the queue was assigned one). By default it is

null (which indicates no application id is assigned).

 @var string

var $_priority = JOB_QUEUE_PRIORITY_NORMAL;

 Description: The priority of the job, options are the priority constants. By default the

priority is set to normal (JOB_QUEUE_PRIORITY_NORMAL).

 @var int

var $_user_variables = array();

Zend Platform

265

 Description: An array holding all the variables that the user wants the job's script to have

when it's called.

 The structure is variable_name => variable_value i.e. if the user_variables array is

array('my_var' => 8), when the script is called, a global variable called $my_var will have

the int value of 8. By default, there are no variables that we want to add to the job's script.

 @var array

var $_global_variables = 0;

 Description: A bit mask holding the global variables that the user wants the job's script to

have when it's called.

 Options are prefixed with "JOB_QUEUE_SAVE_" and may be:

POST|GET|COOKIE|SESSION|RAW_POST|SERVER|FILES|ENV. By default there are no global

variables we want to add to the job's script i.e. In order to save the current GET and COOKIE

global variables, this property should be JOB_QUEUE_SAVE_GET|JOB_QUEUE_SAVE_COOKIE

(or the integer 6). In that case (of GET and COOKIE), when the job is added, the current

$_GET and $_COOKIE variables should be saved, and when the job's script is called, these

global variables should be populated.

 @var int

var $_predecessor = null;

 Description: The job may have a dependency (another job that must be performed before

this job). This property holds the id of the job that must be performed. If this variable is an

array of integers, it means there are several jobs that must be performed before this job. By

default there are no dependencies.

 @var mixed (int|array)

var $_scheduled_time = 0;

 Description: The time that this job should be performed, this variables is the UNIX

timestamp. If set to 0, it means that the job should be performed now (or at least as soon as

possible). By default there is no scheduled time, which means we want to perform the job as

soon as possible.

 @var int

var $_interval = 0;

 Description: The job running frequency in seconds. The job should run every _internal

seconds. This property only applies to recurrent jobs. By default, its value is 0 e.g. run it only

once.

 @var int

var $_end_time = null;

 Description: A UNIX timestamp of the last time this job should occur. If _interval was set,

and _end_time was not, then this job will run forever. By default there is no end_time, so

recurrent jobs run forever. If the job is not recurrent (Occurs only once) then the job will run

at most once. If the end_time has reached and the job was not yet executed, it will not run.

 @var int

Zend Platform User Guide

266

var $_preserved = 0;

 Description: A bit that determines if the job can be deleted from history. When set,

removeJob will not delete the job from history.

 @var int

function ZendAPI_Job($script) {}

 Description: Instantiates a Job object, describing all the information and properties of a job.

 @param script $script relative path (relative to document root supplied in the ini file) of the

script this job should call when it's executing.

 @return Job

function addJobToQueue($jobqueue_url, $password) {}

 Description: Adds the job to the specified queue (without instantiating a JobQueue object).

This function should be used only when adding a single job, to insert more than one job

and/or manipulate other jobs (or job tasks) create and use the Job Queue object. This

function creates a new Job Queue and logs in to it (with the given parameters), adds this job

and logs out

 @param string $jobqueue_url - the full address of the queue we want to connect to.

 @param string $password - for authenticating, the queue password.

 @return int - the added job id or false on failure.

function setJobPriority($priority) {}

 Description: Set a new priority to the job.

 @param int $priority, priority options are constants with the "JOB_QUEUE_PRIORITY_" prefix

All properties SET functions

function setJobName($name) {}

function setScript($script) {}

function setApplicationID($app_id) {}

function setUserVariables($vars) {}

function setGlobalVariables($vars) {}

function setJobDependency($job_id) {}

function setScheduledTime($timestamp) {}

function setRecurrenceData($interval, $end_time=null) {}

function setPreserved($preserved)

function getProperties() {}

 Description: Get the job properties.

 @return array The same format of job options array as in the Job constructor.

function getOutput() {}

 Description: Get the job output.

 @return An HTML representing the job output.

Zend Platform

267

All properties GET functions

function getID() {}

function getHost() {}

function getScript() {}

function getJobPriority() {}

function getJobName() {}

function getApplicationID() {}

function getUserVariables() {}

function getGlobalVariables() {}

function getJobDependency() {}

function getScheduledTime() {}

function getInterval() {}

function getEndTime() {}

function getPreserved() {}

function getJobStatus() {}

 Description: Get the job’s current status. If the job was created and not returned from a

queue (using the JobQueue::GetJob() function), the function will return false. The status is

one of the constants with the "JOB_QUEUE_STATUS_" prefix.E.g. the job was performed and

failed, job is waiting etc.

 @return int

function getTimeToNextRepeat() {}

 Description: Get how many seconds until the next time the job will run. If the job is not

recurrence or it past its end time, then return false@return int

function getLastPerformedStatus() {}

 Description: For recurring jobs get the status of the last execution. For simple jobs,

getLastPerformedStatus is equivalent to getJobStatus. Jobs that haven't been executed will

return STATUS_WAITING.

 @return int

Zend Platform User Guide

268

BIRT Report Functions

Zend has created a PHP API in PHP that uses the Java Bridge to communicate with BIRT classes and

generate reports.

In order to begin benefiting from the advanced reporting capabilities, the BIRT APIs have to be

incorporated into the PHP application’s code.

The Use Cases in Platform Administration provide a demonstration of how the APIs work and how to

insert them in the code. These Use Cases are viewed from Integration | BIRT Reports. In the same

page is a download option "Download BIRT API and Samples" this option is used to download the BIRT

APIs.

To incorporate Zend BIRT APIs in PHP Applications:

1. Download the BIRT API by clicking: "Download BIRT API and Samples"

2. Extract the files into your PHP application’s directory

3. Include these files to the project.

Once the files are incorporated into your PHP application’s project the different APIs can be inserted

into your code to generate various reports.

The following is a detailed description of the BIRT API:

The Zend_Birt Class is a base class for Zend_Birt_Report_Document and Zend_Birt_Report_Design.

 Zend_Birt_Report_Design is used for creating reports from a design file

 Zend_Birt_Report_Report is used for creating reports from report document.

The Zend_Birt_Report_Design class, sets a design file in its constructor that can run to create a report

document from a design file. The report's output can be rendered as a document in PDF or HTML

format. Or the report document can be saved in a file and used later by the Zend_Birt_Report_Report

object. The class also has runAndRenderReportToStream/runAndRenderReportToFile functions that will

run and render a report in one step. The 'running report" functions get a parameter array that

contains key=>value parameter.

The createReport function knows to run a design report and return the Zend_Birt_Report_Report

object that is set with the created report document.

The Zend_Birt_Report_Document class sets a report document in its constructor and renders a report

from the report document in HTML or PDF format.

This class inherits from Zend_Birt and handles the BIRT Report object created from a report

document. It also gets an array of bookmarks, TOCs, report information, and an html page of

bookmarks and the html page count.

Note:

If you are using the function setHyperlinkConfiguration($formatString) to create a report that

automatically generates hyperlinks, make sure to add a parameter otherwise the function will return a

fatal error.

There are three basic actions that should be done in order to create BIRT Reports:

1. Instantiate the report design that contains the information and display type.

2. Define the parameters.

3. Render the report.

Zend Platform

269

Directives
Contents:

Accelerator Directives

Zend Cache Directives

Full Page Caching Directives

Monitor Directives

Platform Administration Directives

Collector Center Directives

Debugger Directives

ZDS Directives

Java Bridge Directives

Session Clustering Directives

Job Queue Directives

This chapter is a reference chapter for Platform directives.

Zend Platform User Guide

270

Accelerator Directives

Directive Mode Reload Description

zend_accelerator.max_wasted_percentage ZEND_INI_SYSTEM Yes Max

percentage of

"wasted"

memory until

restart is

scheduled

zend_accelerator.max_warmup_hits ZEND_INI_SYSTEM Yes How many hits

are considered

'warmup' (for

statistics)

zend_accelerator.consistency_checks ZEND_INI_ALL Yes Check cache's

checksum each

N requests

zend_accelerator.force_restart_timeout ZEND_INI_SYSTEM Yes Time to wait

for cache being

unused when

restart is

scheduled

(seconds)

zend_accelerator.perform_timings ZEND_INI_ALL Yes Collect

performance

statistics

zend_accelerator.validate_timestamps ZEND_INI_ALL Yes Check file

timestamps

zend_accelerator.revalidate_freq ZEND_INI_ALL Yes How often to

check file

timestamps on

Windows

(seconds)

zend_accelerator.user_blacklist_filename ZEND_INI_SYSTEM Yes* Path for a file

that contains a

list of files not

to accelerate

zend_accelerator.compress_all ZEND_INI_PERDIR No Enable

compression

for accelerated

files

zend_accelerator.enabled ZEND_INI_SYSTEM No Enable

acceleration

zend_accelerator.max_accelerated_files ZEND_INI_SYSTEM No Maximum

number of

keys (scripts)

Zend Platform

271

Directive Mode Reload Description

in accelerator

hash table

zend_accelerator.mmap_base_file ZEND_INI_SYSTEM No Windows:

location of

mmap address

file

zend_accelerator.httpd_uid ZEND_INI_SYSTEM No UID of httpd

process

zend_accelerator.memory_consumption ZEND_INI_SYSTEM No Accelerator

shared

memory block

size (Mbytes)

zend_accelerator.allow_noshm ZEND_INI_SYSTEM No Allow running

in "no shared

memory mode"

(cgi, cli)

zend_accelerator.use_cwd ZEND_INI_SYSTEM No Use current

directory as a

part of script

key

zend_accelerator.preferred_memory_model ZEND_INI_SYSTEM No Shared

memory model

to use

zend_accelerator.dups_fix ZEND_INI_ALL Yes Use hack to

prevent

"duplicate

definition"

errors

zend_accelerator.cgi_base_shm_address

ZEND_INI_SYSTEM

No The base

address for the

CGI/CLI shared

memory block

Zend Platform User Guide

272

Zend Cache Directives

Directive Mode Description

zend_cache.disk.dir_levels PHP_INI_SYSTEM Disk cache API only. Sets the

directory depth for storing the

keys. (e.g. by setting dir_level to 2

and storing 'KEY', the new partial

caching will place the 'KEY' under 2

directories below the save path

(see below)). Possible values are

0,1 or 2.

zend_cache.disk.save_path PHP_INI_SYSTEM Disk cache API only. sets the path

for the disk caching.

zend_cache.shm.memory_cache_size PHP_INI_SYSTEM Shared memory cache API only.

Sets the memory size to be used

by the cache.

zend_cache.shm.max_segment_size PHP_INI_SYSTEM Shared memory cache API only.

Defines the Shared Memory's

segment size.

Defining the segment size to the

same size as the cache size will

create one segment. If you set the

segment size to a smaller value the

cache will be segmented. For

example: cache size = 4 and

segment size = 1, creates 4

segments in the cache.

zend_cache.enabled PHP_INI_SYSTEM Enables partial caching. To disable

set to 0 and all API functions will

return false, or NULL.

Zend Platform

273

Full Page Caching Directives

Directive Mode Reload Description

zend_accelerator.max_cached_filesize ZEND_INI_ALL Yes Max cached

size for

content cache

(Kbytes)

zend_accelerator.min_free_disk ZEND_INI_ALL Yes Minimum disk

space to leave

free for

content cache

(in M or %) if

not stated

otherwise it

will hold the

default value

10%

zend_accelerator.php_extensions ZEND_INI_SYSTEM No* List of

extensions to

consider for

content cache

when directory

is configured

zend_accelerator.compress_blacklist_filename ZEND_INI_SYSTEM Yes* Path for a file

that contains a

list of files not

to compress

zend_accelerator.compression ZEND_INI_PERDIR No Enable

compression

for content

cached files

zend_accelerator.output_cache_enabled ZEND_INI_SYSTEM No Enable content

caching

zend_accelerator.output_cache_config ZEND_INI_SYSTEM No Content Cache

configuration

format|Content

cache

configuration

file]

zend_accelerator.output_cache_dir ZEND_INI_SYSTEM No Content cache

storage

directory

zend_accelerator.max_cache_size Maximal

amount of

diskspace to

Zend Platform User Guide

274

Directive Mode Reload Description

be occupied by

Content Cache

zend_accelerator.php_api_lifetime * ZEND_INI_SYSTEM No Determines the

cache's max

lifetime

overriding the

partial cached

object's

lifetime.

Default values

are: 60*60*24

=24hours.

This value is

the maximum

lifetime of the

cached object.

Using the

cache API

allows to set

values BELOW

that value, but

not above.

(*) Deprecated

Zend Platform

275

Monitor Directives

Directive Mode Reload

Description Default

Value

"zend_monitor.max_var_len"

ZEND_INI_ALL Yes Maximum variable

length for

collected data in

POST/SERVERS.

Limit applies to

each single value.

"zend_monitor.warmup_requests" ZEND_INI_ALL Yes Number of

requests until

monitor would

use averaging

statistics to

produce events

"zend_monitor.load_sample_freq" ZEND_INI_SYSTEM Yes Frequency of

checking for load

events (seconds)

"zend_monitor.rotate_freq" ZEND_INI_SYSTEM Yes Frequency for

rotating monitor

internal logfiles

(seconds)

"zend_monitor.reconnect_timeout" ZEND_INI_SYSTEM Yes How long monitor

will wait until

trying to restore

broken connection

to central

(seconds)

"zend_monitor.watch_functions" ZEND_INI_SYSTEM Yes*

 List of functions

to watch for time

events (@file

reads list from

file)

"zend_monitor.watch_results" ZEND_INI_SYSTEM Yes* List of functions

to watch for

failure return

events (@file

reads list from

file)

"zend_monitor.collector_host" ZEND_INI_SYSTEM No Hostname for

central

"zend_monitor.collector_port" ZEND_INI_SYSTEM No Port for central

"zend_monitor.log_dir" ZEND_INI_SYSTEM No Directory where

Zend Platform User Guide

276

Directive Mode Reload

Description Default

Value

monitor logs will

be kept

zend_monitor.server_key_dir ZEND_INI_SYSTEM No Path to the

directory for the

RC4 key files:

Node: The server.

key file

Collector Center:

List of files (for

each node in the

cluster), which

contains the RC4

key. The file

names are the

MD5

representation of

the contained

key.

"zend_monitor.server_key" ZEND_INI_SYSTEM No Filename for Node

RC4 key

"zend_monitor.enable" ZEND_INI_ALL Yes Monitoring is

enabled

"zend_monitor.error_level" ZEND_INI_ALL Yes Errors reported as

events

"zend_monitor.error_level.severe" ZEND_INI_ALL Yes Errors reported as

severe events

"zend_monitor.silence_level" ZEND_INI_ALL Yes Three options:

0 - always Report

Errors - Ignore

the error-

reporting setting

and the silence

operator and

report all PHP

errors.

1 - report errors

that match the

error-reporting

criteria - Ignore

all PHP errors

silenced using

either the error-

reporting setting

or the silence

Zend Platform

277

Directive Mode Reload

Description Default

Value

operator.

2 - report any

errors not

silenced with the

operator @ -

Ignore the error-

reporting setting

and only ignore

errors silenced

with the silence

operator. "

zend_monitor.error_reporting ZEND_INI_SYSTEM No Bitmask for

events to be

reported.

"zend_monitor.max_script_runtime_

load_cutoff"

ZEND_INI_ALL Yes Load value which

would suppress

time-related

events

"zend_monitor.report_variables_data" ZEND_INI_ALL Yes which variables to

report (*)

"zend_monitor.max_script_runtime" ZEND_INI_ALL Yes Script runtime

above which

event is produced

(ms)

"zend_monitor.max_function_runtime" ZEND_INI_ALL Yes Function runtime

above which

event is produced

(ms)

"zend_monitor.max_memory_usage" ZEND_INI_ALL Yes Memory usage

above which

event is produced

(K)

"zend_monitor.max_load" ZEND_INI_ALL Yes Load above which

event is produced

"zend_monitor.max_script_runtime.

severe"

ZEND_INI_ALL Yes Script runtime

above which

severe event is

produced (ms)

"zend_monitor.max_function_runtime.

severe"

ZEND_INI_ALL Yes Function runtime

above which

severe event is

produced (ms)

"zend_monitor.max_memory_usage.

severe"

ZEND_INI_ALL Yes Memory usage

above which

Zend Platform User Guide

278

Directive Mode Reload

Description Default

Value

severe event is

produced (K)

"zend_monitor.max_load.severe" ZEND_INI_ALL Yes Load above which

severe event is

produced

"zend_monitor.max_time_dev" ZEND_INI_ALL Yes Deviation from

average script

runtime above

which event is

produced (%)

"zend_monitor.max_output_dev" ZEND_INI_ALL Yes Deviation from

average output

size above which

event is produced

(%)

"zend_monitor.max_mem_dev" ZEND_INI_ALL Yes Deviation from

average memory

usage above

which event is

produced (%)

"zend_monitor.max_time_dev.severe" ZEND_INI_ALL Yes Deviation from

average script

time above which

severe event is

produced (%)

"zend_monitor.max_output_dev.severe" ZEND_INI_ALL Yes Deviation from

average output

size above which

severe event is

produced (%)

"zend_monitor.max_mem_dev.severe" ZEND_INI_ALL Yes Deviation from

average memory

usage above

which severe

event is produced

(%)

"zend_monitor.mem_threshold" ZEND_INI_ALL Yes If memory usage

below this value,

no deviation

events are

produced

"zend_monitor.time_threshold" ZEND_INI_ALL Yes If script runtime

goes below this

value, no

Zend Platform

279

Directive Mode Reload

Description Default

Value

deviation events

are produced

"zend_monitor.output_threshold" ZEND_INI_ALL Yes If output size

goes below this

value, no

deviation events

are produced

"zend_monitor.event_overload_threshold" ZEND_INI_SYSTEM Yes Depreciated

If more then 1000

events happen in

this time

(seconds), extra

events will be

dropped

"zend_monitor.disable_script_runtime_

after_function_runtime"

ZEND_INI_ALL Yes Disable "script

slow" event after

"function slow"

event happened

"zend_monitor.tmp_dir" NONE No Directory where

monitor temp files

are written

"zend_monitor.max_content_download_

time"

ZEND_INI_ALL Yes If fpassthru()

execution is

above this value

event is produced

(ms)

5000

"zend_monitor.max_content_download_

time.severe"

ZEND_INI_ALL Yes If fpassthru()

execution is

above this value

severe event is

produced (ms)

10000

"zend_monitor.max_apache_processes" ZEND_INI_ALL Yes If number of

Apache processes

is more than this

value an event is

produced

200

"zend_monitor.max_apache_processes.

severe"

ZEND_INI_ALL Yes If the number of

Apache processes

is more than this

value a severe

event is produced

250

"zend_monitor.security_filtered_variables" ZEND_INI_ALL Yes The superglobal

variables (*) that

Zend Platform User Guide

280

Directive Mode Reload

Description Default

Value

are filtered for

blacklisted words

(given in the

security_black_list

directive) PRGCVF

"zend_monitor.security_black_list" ZEND_INI_ALL Yes The words that

are filtered out of

the chosen

superglobal

variables (@file

reads list from

file)

"zend_monitor.debug_level" ZEND_INI_ALL No Debug level for

log printouts

"zend_monitor.max_script_lifetime" ZEND_INI_ALL No Max lifetime of a

script statistic

data within the

monitor.

"zend_monitor.longscript.enable" NONE Yes Enables this event

"zend_monitor.longfunction.enable" NONE Yes Enables this event

"zend_monitor.zenderror.enable"

NONE Yes Enables this event

"zend_monitor.devscript.enable" NONE Yes Enables this event

"zend_monitor.funcerror.enable" NONE Yes Enables this event

"zend_monitor.devmem.enable" NONE Yes Enables this event

"zend_monitor.outsize.enable" NONE Yes Enables this event

"zend_monitor.memsize.enable" NONE Yes Enables this event

"zend_monitor.load.enable" NONE Yes Enables this event

"zend_monitor.custom.enable" NONE Yes Enables this event

"zend_monitor.slowcontentdownload.enable" NONE Yes Enables this event 1

"zend_monitor.maxapacheprocesses.enable" NONE Yes Enables this event 1

"zend_monitor.javaexception.enable" NONE Yes Enables this event 1

"zend_monitor.httperror.enable" NONE Yes Enables this event 1

"zend_monitor.max_events_per_second" The maximum

events per second

the monitor

collector will

report.

Limitations:

Values may range

between 1 to 999

higher or lower

values are

8

Zend Platform

281

Directive Mode Reload

Description Default

Value

ignored

 (*) G - GET, P - POST, C - COOKIE, R - RAW_POST_DATA, E - ENV, V - SERVER, S - SESSION, F -

FILES

Zend Monitor Event Types

For each event type there is a zend_monitor.<event_type>.

zend_monitor.<event_type> - can be set to off then this event type will not be reported. E.g.:

zend_monitor.memsize.enable = Off however the same settings can be easily defined from PHP

Intelligence | Event Triggers.

The following list displays the event types and the respective directive for enabling and

disabling Events:

 Slow Script Execution Absolute - zend_monitor.longscript.enable

 Slow Script Execution Relative - zend_monitor.devscript.enable

 PH P Error - zend_monitor.zenderror.enable

 Java Exception - zend_monitor.javaexception.enable

 Function/Database Error - zend_monitor.funcerror.enable

 Slow Function Execution/Slow Query Execution - zend_monitor.longfunction.enable

 Slow Content Download - zend_monitor.slowcontentdownload.enable

 Maximum Apache Processes Exceeded - zend_monitor.maxapacheprocesses.enable

 Excess Memory Usage (Absolute and Relative) -

zend_monitor.devmem.enablezend_monitor.memsize.enable

 Database Error - zend_monitor.funcerror.enable (same as the Function Error event).

 Slow Query Execution - zend_monitor.longfunction.enable

 Inconsistent Output Size - zend_monitor.outsize.enable

 Load Average - zend_monitor.load.enable

 Custom Event - zend_monitor.custom.enable

 HTTP Error - zend_monitor.httperror.enable

Note:

All event types are enabled, by default. zend_monitor.enable when turned off will disable all event

reporting activity.

Zend Platform User Guide

282

Platform Administration Directives

Directive Description

zps.install_dir The place the Zend directory was installed to (Platform/ZPS)

studio.install_dir The place the Zend directory was installed to (Studio Server)

zend_gui.language Language code Platform Administration uses for texts (i.e. en for

English)

zend_gui.language_charset If set, all the Platform Administration files will send a Content-

Type header with this charset also used to send specific charset

in Email (should be used in the Japanese version)

zend_gui.ini_modifier The path to the ini_modifier utility

zend_central.error_logging If enabled, Platform Administration will log errors into the file

'zend_central_error_log' that is located in the <install-dir>/logs

directory.

zend_central.gui_address The full address of Platform Administration, this address is used

by the node to access Platform Administration (login process)

The address is in http(s)://host:port/path format

zend_central.node_address Each node has this directive set with his address, the same

address that he gave the central during installation (this is the

way the central identify the server in the DB) The address is

ONLY the hostname/IP address.

zds.your_servers_max_clients Use for the ZDS tests in Platform Administration (Performance

section in Platform), to "know" what is the value of the

maxClients of the server.

Zend Platform

283

Collector Center Directives

Directive Default Description

zend_monitor.collector_cert Certificate file for the Collector Center

zend_monitor.collector_key Private key file for the Collector Center

zend_monitor.collector_port 10010 Port to listen

zend_monitor.server_key_dir Directory to store node keys

zend_monitor.events_db Event Database URI

zend_monitor.pull_freq 3600 How often to pull node data (seconds)

zend_monitor.ping_freq 300 How often to check node availability (seconds)

zend_monitor.log_dir Directory to store logs

zend_monitor.gui_dir Directory where Platform Administration files

reside

zend_monitor.event_lifetime 24*7*3600 How long until event is considered too old

(seconds)

zend_monitor.cleanup_freq 500

Zend Platform User Guide

284

Debugger Directives

Directive Mode Reload Description

zend_debugger.allow_hosts ZEND_INI_SYSTEM Yes Hosts allowed to connect

(hostmask list)

zend_debugger.deny_hosts ZEND_INI_SYSTEM Yes Hosts denied to connect

(hostmask list)

zend_debugger.allow_tunnel ZEND_INI_SYSTEM Yes Hosts allowed to use

tunnel process (hostmask

list)

zend_debugger.expose_remotely ZEND_INI_SYSTEM Yes Which client can know

debugger is installed

zend_debugger.max_msg_size ZEND_INI_ALL Yes Maximum message size

accepted by Debugger

zend_debugger.httpd_uid ZEND_INI_SYSTEM No UID for the httpd process

zend_debugger.tunnel_min_port Minimal possible value of

Debugger tunneling port

Default value: 1024

zend_debugger.tunnel_max_port Maximal possible value of

Debugger tunneling port

Default value: 65535

Zend Platform

285

ZDS Directives

Directive Mode Reload Description

zds.enable ZEND_INI_SYSTEM Yes Enable ZDS file serving

zds.mime_types_file ZEND_INI_SYSTEM No* Location of the MIME types file

zds.log_file ZEND_INI_SYSTEM No Log file

zds.log_level ZEND_INI_SYSTEM No Log verbosity level (0-5)

zds.min_file_size ZEND_INI_SYSTEM Yes Minimal file size to serve via ZDS

process (smaller files served via

Apache)

zds.disable_byterange ZEND_INI_SYSTEM Yes Disable handling byte-range requests

(all requests would return entire file)

zds.mmap_chunk ZEND_INI_SYSTEM No Memory chunk to map when serving

file, in K. Bigger chunks imply higher

memory usage by ZDS.

zds.nice ZEND_INI_SYSTEM No Priority of ZDS server process. A

Higher value means lower priority.

Value range [1-19] anything higher

than 19 will be converted to 19.

zds.etag_params

ZEND_INI_SYSTEM

No Defines the file attributes that ZDS will

use to build an ETag for the file it

sends.

zds.child_max ZEND_INI_SYSTEM No Maximum number of ZDS sub-

processes.

zds.poll_delay ZEND_INI_SYSTEM No Delay between poll invocations, in

order to enable other processes to run

better

zds.uid ZEND_INI_SYSTEM No UID of the ZDS file server

Zend Platform User Guide

286

Java Bridge Directives

Directive Mode Description

java.server_port PHP_INI_SYSTEM Port for Java Bridge

java.ints_are_longs PHP_INI_ALL If true, convert PHP integer to Java Long type

(otherwise converted to Java Integer)

java.encoding Set encoding to expect from PHP for Java

Server

java.exception_error_level For PHP4, error level which is used for

reporting exceptions. PHP5 uses PHP native

exceptions.

java.use_java_objects PHP_INI_ALL Set to 0 for Java Bridge to preserve the current

implementation (which converts basic java

objects to primitives, e.g. java.long.Short to

short). Set to 1 for Java Bridge to return Java

objects and not attempt to convert them to

primitives.

Zend Platform

287

Session Clustering Directives

Session Clustering is a transparent application that does not require a user interface or a command

line utility.

Session Clustering is configured by changing the session clustering directives in the zend.ini.

Directive Value Description

mod_cluster.daemon_verbosity_level

[1..3] The verbosity level of the Session

Clustering daemon messages.

mod_cluster.number_of_threads [1..n] Number of worker threads run by the

Session Clustering daemon, mainly

handling connections. Increase

according to the running machines

strength.

mod_cluster.garbage_collection_delta [0..n] The number of seconds between

executions of the Session Clustering

daemon’s garbage collector

frequency.

mod_cluster.session_lifetime [1..n] The lifetime of a session (in seconds

either as file or in memory).

Sessions older than that will be

removed by garbage collection.

mod_cluster.statistics_delta_minutes [0..n] The number of minutes between

statistics dump to the log file

mod_cluster.network.hostname <machine

hostname>

The IP/hostname of the machine on

which the Session Clustering daemon

runs. Note: Change the

mod_cluster.network.hostname’s

value to the name of the machine

in the network.

mod_cluster.network.tcp_port_remote [1..65535] The TCP port the Session Clustering

daemon listens to in order to

communicate with other Session

Clustering daemons

mod_cluster.network.unix_socket_permissions [octal permission] Permission to set for Unix socket file.

When the daemon is run, it creates a

ZendSessionManager.sock file, with

these permissions

mod_cluster.ha.udp_port 45678 HA communication port

mod_cluster.ha.broadcast_address

default

255.255.255.255

cluster's broadcast mask

mod_cluster.ha.broadcast_delta default 30 The time, in seconds between

broadcasts.

mod_cluster.message_server_port The port on which the daemon

listens for control messages (which

Zend Platform User Guide

288

Directive Value Description

can be sent using the messenger

utility).

mod_cluster.allowed_hosts

 A comma separated list of IPs or IP

masks. these masks indicate

machines which the daemon will

agree to connect and to receive

connections

mod_cluster.storage.use_permanent_storage

0 Session Clustering data storage:0-

memory, 1-disk Note:

Environments that have large

amounts of session data (over a

Mega) should save session

information to the disk.

mod_cluster.storage.memory_cache_size [1..n] When using DISK STORAGE and not

memory, this number specifies the

amount of memory (in bytes) used

as a cache by the Session Clustering

daemon.

mod_cluster.ha.allowed_ips_file <Platform install

dir>/etc/allowed_ip

The File containing list of allowed IPs

to connect with the Session

Clustering daemon

mod_cluster.storage.flush_delta

0 Determines the storage method and

intervals for storage flush

mod_cluster.storage.save_path The location on disk where saved

sessions are stored

mod_cluster.storage.dir_levels

[1..n] The number of dir levels used in

saving files

mod_cluster.storage.filename_cache_num_entries [1..1024] The Maximum number of session file

pointers held in an internal cache

zend_temp_dir The location in which the

 ZendSessionManager.sock and the

ZendSessionManager.lock are stored

zend_monitor.log_dir The location in which log files are

stored

mod_cluster.network.use_unix_sockets

 Communication with the

mod_cluster.so Note: Do not

change this value, It should

always be set to = 1.

mod_cluster.network.tcp_port_local [1..65535] If use_unix_sockets=0 then this will

be the TCP port the Session

Clustering daemon listens to. Note:

The Session Clustering daemon

will accept communication from

localhost on that port only.

mod_cluster.verbosity_level [1..5] The verbosity level of the Session

Zend Platform

289

Directive Value Description

 Clustering debug messages.

mod_cluster.log_rotation_delta

 The number of minutes after which a

check for log rotation is performed

mod_cluster.log_rotation_size The size of the log file in MBs

Additional Information

mod_cluster.storage.flush_delta

Determines the write policy for sessions, when disk-mode is used.

If 0, then sessions are written to disk "on the spot" (write-through). there's no delay and when the

WRITE function returns, then either the session is written or an error has occurred. This method may

reduce performance.

If a positive number is specified, then write-back is used. For example, if 3 is specified, then a session

is not written immediately, but only 3 seconds later. This method may increase performance.

However, when the WRITE functions returns, data that has not been actually written! it can cause the

following effects:

 if the daemon crashes, then all data written but not yet flushed (3 seconds max) will be lost

 if an error occurs, but WRITE already returned, then we have no way to inform the user of

the failure

mod_cluster.storage.dir_levels

Determines the number of directory levels used when storing sessions on disk. The following example

shows what dir levels are:

Example:

mod_cluster.storage.save_path = /tmp/zend_sessions/

mod_cluster.storage.dir_levels = 2

Assuming session ID is abc123def456, then the actual file saved to disk will be

/tmp/zend_sessions/a/ab/abc123def456. So, the more dir levels there are, the level of

indirection increases. What is it good for? it makes sure that you don't have a single

directory with hundreds or thousands of sessions, since this situation reduces disk

response time when accessing a single file.

Zend Platform User Guide

290

Job Queue Directives

Directive Mode Reload Description

zend_jq.host (string) daemon

no The host's IP

zend_jq.alias (string) daemon

no The alias of the JobQueue

daemon in the platform GUI

zend_jq.port (int) daemon

no The port on which the daemon

listens for requests (such as

adding a job)

zend_jq.message_server_port (int) daemon

no The port on which the daemon

listens to control signals from

Platform Central (such as

stopping the daemon)

zend_jq.data_dir (string) daemon

no The path to the base directory

for the file system persistency

zend_jq.fastcgi_conf (string) daemon

no The path to configuration file

for the fastcgi used to perform

the jobs

zend_jq.document_root (string) daemon

no The root directory in which

the scripts for execution

reside

zend_jq.login_pwd (string) daemon

no The MD5 of the login

password for the queue

zend_jq.max_num_of_request_workers

(int)

daemon

no The number of threads used

to accept incoming requests

(jobs)

zend_jq.max_num_of_process_workers

(int)

daemon

no The number of threads used

to process jobs (should be

equal to the number of fastcgi

processes)

zend_jq.debug_level (int) daemon

yes Level of debug messages

(1..3)

zend_jq.max_queue_depth (int) daemon

yes The maximum jobs allowed in

the queue. if no directive is

provided depth is unlimited

zend_jq.initial_backoff (int) daemon

yes The time in seconds used as

the basis for the for the

backoff time

zend_jq.backoff_factor (int) daemon

yes The factor by which the the

backoff time is multiplied after

each execution failure

zend_jq.max_exec_failures (int) daemon yes The maximum number of

Zend Platform

291

Directive Mode Reload Description

 allowed retries for an

execution failed job

zend_jq.allowed_hosts (string) daemon

yes The IPs that are allowed to

connect to the daemon

zend_jq.max_history_time (float) daemon

yes The maximum time (in hours)

a job is kept in history (unless

it has property

preserved=yes). If no

directive is provided time is

unlimited.

zend_jq.history_refresh_interval (float) daemon

yes The interval in hours between

persistent storage refreshes

(jobs that passed their

max_history_time are

removed).

zend_jq.db_host (string) daemon

no The hostname of the database

used by daemon

zend_jq.db_port (int) daemon

no The port of the database used

by daemon (if omitted the

default database port is used)

zend_jq.db_socket (int)

 daemon no the socket file of

the database used by daemon

(relevant only for UNIX)

zend_jq.log_rotation_size (int) daemon

no The maximum size of the log

(in MB) before it is rotated

zend_jq.log_rotation_delta (int) daemon

no The frequency to check

whether to rotate log

zend_jq.db_user (string) daemon

no the username of the database

used by daemon

zend_jq.db_password (string) daemon

no The password of the database

used by daemon

zend_jq.db_password (string) daemon

no the password of the database

used by daemon

zend_jq.moving_window_size (int) daemon

no The size of the moving

window in seconds used for

queue statistics

zend_jq.client_connection_timeout (int) client no The number of seconds until

connection from client to

daemon is timed out

Zend Platform User Guide

292

Tutorials
Contents:

Integrating Existing and Legacy Applications

Calling an EJB on Websphere from PHP

Partial and Preemptive Page Caching

About SNMP

This section is dedicated to tutorials on different subjects.

Tutorial Feedback

Please send feedback and suggestions for new tutorials to: documentation@zend.com

mailto:documentation@zend.com

Zend Platform

293

Integrating Existing and Legacy Applications

This tutorial details the integration of Zend Platform’s Event Details screens with other legacy

applications.

Reproducing and resolving bugs, one of the most problematic challenges of development, is often time

consuming, and in most cases, almost impossible when information is not collected at the time of the

occurrence. PHP Intelligence is an event driven system that provides real-time analysis of PHP

applications.

By enabling you to obtain immediate insight into your PHP applications, PHP Intelligence provides a

fast and efficient means to reproduce and resolve problems, while maintaining a complete audit trail

of the occurrence's details.

PHP Intelligence pro-actively alerts you to problematic occurrences in your application. This means

that if you are a Developer or System Administrator you will not need to monitor the Platform console

at all times-instead, the information comes to you! An event, containing the audit trail of an

occurrence, can be made known to you through an E-mail Notification. If you require full event details

available outside of the Platform console, an Event Details screen can be published to a URL in XML

format. Both Event Details screens contain aggregated information relevant to the occurrence of an

event, or in other words "Full Problem Context": Event type, Event ID, Timestamp, Severity, number

of occurrences, etc.

Full Problem Context provides valuable information for the entire PHP application lifecycle

(development, production and deployment). Exposing the source of an occurrence along with the

ability to drill-down and investigate details pertaining to an event’s location, time and context,

provides in-depth insight to the reasons why the event occurred and a basis for resolving the issue.

PHP Intelligence includes the following Event Details screen Types: Slow Script Execution, PHP Errors,

Function Errors, Memory Usage, Database Errors, Query Execution, Output Sizes, Load Averages and

more...

Each Event Details screen Type includes basic and event-specific details such as: event type, event

ID, Timestamp, Severity, number of occurrences, error type, error text, triggered value, load average,

Source File Line, Script Name, Host URI, Vardata Type & Name, Function Name, Argument Numeric

Value, Function, Included Files, Backtrace, etc.

Contents of the XML output can be easily utilized and integrated to provide an information feed to

various legacy systems such as: Bug tracking systems for development and QA, CRM applications for

managing customer care, management systems such as Tivoli and HP OpenView for system health

information, and most commonly, generic monitoring systems such as Nagion or BigBrother that only

provide OS service information.

Using event information, developers and administrator teams have a single point of reference to

streamline the maintenance workflow. You can further enhance your development lifecycle by

debugging your PHP code referenced in Event Details screens directly through the built-in integration

with Studio. This feature includes debug capabilities that enable you to add watches, define

conditional breakpoints, view the stack trace and step into the source code to immediately debug the

problem.

Platform's XML output enables information to be easily interchanged. Using "Event Details",

developers can be sure that information pertaining to code, database and performance issues can be

easily reused in a multitude of applications. Examples of this use include sending SMS messages

containing event details, or triggering a mailing system to send a promotional gift to a customer who

encountered a performance problem. Done by, extracting customer ID information provided to you in

the Event Details screen (cookies).

Zend Platform User Guide

294

Event Details screens are delivered as XML, by defining the relevant action ("Submit Report to the

Specified URL") for an event. The report information is submitted as XML data to the specified URL.

Submission is done using the POST method, and the data is supplied through a variable named

'event_data'. This variable is accessible in PHP through $_POST['event_data'].

XML reports are structured as follows:

Each attribute is included if it exists in the Event Details screen:

<?xml version="1.0" ?>

<event type event_id class timestamp time severity>

If there is an error:

 <error type>error text</error>

 <stats triggered_value avg load_average/>

If there is a source file:

 <source file line/>

 <script name host uri>

 <vardata type name value/>

 </script>

If there is a function:

 <function name>

 <args>

 <arg num value/>

 </args>

 </function>

If there are included files:

 <included_files>

 <file name\>

 </included_files>

If there is a backtrace for this event:

 <backtrace>

 <call depth function file line/>

 </backtrace>

</event>

By viewing the XML tagged file as fielded text, the fielding makes it possible to break Event Details

screens down to their component parts to any degree of granularity for storage in a database. Once in

the database, the data can be utilized by another application.

The following example shows how Event Details data can be extracted from an XML file and inserted

into a database for use in a different system (could be any system based on a database, such as: Bug

Tracking, CRM, management or any other application).

<?PHP

$event_xml_data = (isset($_POST['event_data']))?$_POST['event_data']:null;

if (!$event_xml_data) { // no Event Context arrvied

 die();

}

$xml = simplexml_load_string($event_xml_data);

Implement different behaviors according to Class

$event_type = (string) $xml['type'];

// if this event is a Custom Event, we may implement different behaviors according to

the Custom Event’s class

if ($event_type == 'custom') {

$custom_class = (string) $xml['class'];

Zend Platform

295

switch ($custom_class) {

// different behaviors according to the class

}

}

// get the new event id

$event_id = (int) $xml['event_id'];

// insert a new event with its genreal info (type and timestamp) to the db

insert_new_event_into_db($event_id,$event_type ,(int)

$xml['timestamp']);

// parse the function parameters of the function where the event occured

$function_parameters = array();

foreach ($xml->function->args->arg as $arg) {

 $function_parameters[(int) $arg['num']] = (string) $arg['value'];

}

// insert the function data (function name and parameters, where the

event occured) to the db

update_event_function_data($event_id, (string) $xml->function['name'],

$function_parameters);

/**

 * insert a new event (with some genreal info) to the db

 *

 * @param int $id id of the new event in the ZendPlatform events database

 * @param string $type the event type

 * @param int $timestamp the unix timestamp when the event occured

 */

function insert_new_event_into_db($id,$type,$timestamp) {

}

/**

 * update a specific event function data in the database

 *

 * @param int $id the event id we want to update

 * @param string $function_name name of the function where the event occured

 * @param array $function_params array of the function parameters (num

=> value)

 */

function update_event_function_data($id,$function_name,$function_params) {

}

?>

The first part of the example uses a PHP 5 Simple XML extension to parse XML to PHP objects that can

be processed with normal property selectors and array iterators. The second part extracted data from

the event XML data, and inserted it into a database.

As this tutorial demonstrated, XML Event Details generated by the PHP Intelligence component,

provides Developers and System Administrations a single point of reference for production

environments, and to streamline maintenance workflow. In environments where multiple

management applications are an everyday reality, Platform provides a flexible information feed to

legacy systems, relieving the overhead normally required to integrate with these applications.

Zend Platform User Guide

296

Calling an EJB on Websphere from PHP

This tutorial reviews the steps needed to call an EJB on WebSphere from PHP using the Java Bridge.

These instructions assume that the developer has a system(s) with WebSphere, PHP, and the Zend

Platform installed.

To call an EJB on Websphere from PHP, a script file needs to be created. This script should start the

javaMW server with the correct settings to run a Websphere client.

Some of the important things to remember are:

1. Use IBM's java that ships with the Application Client to run the javaMW server.

2. The jars containing the client classes for any EJB that is to be called need to be classpath of

the javaMW server.

3. The jars and environment variables for the WebSphere application client runtime need to be

on the command line staring the javaMW server.

The following is an example script file for starting the javaMW server with the WebSphere runtime

configuration options and the jars needed to call the Basic Calculator Technology sample shipped with

Websphere.

Note:

This script is a modified version of the Basic Calculator Thin Client script file shipped with the

Websphere Client Install.

#!/bin/sh

. /opt/IBM/WebSphere/AppClient/bin/setupClient.sh

Change the PROVIDER_URL to point to this machine or another server.

if ["${SERVERPORTNUMBER}" != ""]

 then

 PROVIDER_URL=iiop://$DEFAULTSERVERNAME:$SERVERPORTNUMBER

else

 PROVIDER_URL=iiop://$DEFAULTSERVERNAME

fi

"$JAVA_HOME/bin/java" $WAS_LOGGING -classpath

/usr/local/Zend/Platform/Bin/javamw.jar:/opt/IBM/WebSphere/AppClient/samples/lib/Tec

hnologySamplesThinClient/BasicCalculatorClientCommon.jar:/opt/IBM/WebSphere/

AppClient/samples/lib/TechnologySamplesThinClient/BasicCalculatorThinClient.

jar:/opt/IBM/WebSphere/AppClient/samples/lib/TechnologySamplesThinClient/Bas

icCalculatorEJB.jar

-Djava.ext.dirs="$WAS_EXT_DIRS" -Djava.naming.provider.url=$PROVIDER_URL

-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFac

tory

-Dzend.javamw.threads=20 -Dzend.javamw.port=10001 "$SERVER_ROOT"

"$CLIENTSAS" com.zend.javamw.JavaServer

Instructions

 Start the javaMW server using the script.

 Write a PHP client, which uses the Java Bridge functionality to call the ejb running on

Websphere.

The following is an example PHP client for calling the Basic Calculator Technology sample.

<?php

Zend Platform

297

 // Get the provider URL and Initial naming factory

 // These properties were set in the script that started the Java Bridge

 $system = new Java("java.lang.System");

 $providerUrl = $system->getProperty("java.naming.provider.url");

 $namingFactory = $system->getProperty("java.naming.factory.initial");

 $envt = array(

 "javax.naming.Context.PROVIDER_URL" => $providerUrl,

 "javax.naming.Context.INITIAL_CONTEXT_FACTORY" => $namingFactory,);

 // Get the Initial Context

 $ctx = new Java("javax.naming.InitialContext", $envt);

 // find the EJB

 $obj = $ctx->lookup("WSsamples/BasicCalculator");

 // Get the Home for the EJB

 $rmi = new Java("javax.rmi.PortableRemoteObject");

 $home = $rmi->narrow($obj, new

Java("com.ibm.websphere.samples.technologysamples.ejb.stateless.basiccalcula

torejb.BasicCalculatorHome"));

 // Create the Object

 $calc = $home->create();

 // Call the EJB

 $num = $calc->makeSum(1,3);

 print ("<p> 1 + 3 = $num </p>");

?>

This tutorial detailed how developers can use EJB on WebSphere from PHP using the Java Bridge.

The two steps are: to create a script file to start the JavaMW server and to write a PHP client

which uses the Java Bridge functionality to call the EJB running on WebSphere.

Partial and Preemptive Page Caching

This tutorial will review one of Platform’s most powerful features, Partial Page Caching. Partial Page

Caching is used in cases where it is impractical or impossible to cache the entire output such as when

sections of the script are fully dynamic or when the conditions for caching the script are too

numerous. An example of this type of usage is when some of the output is a form, that has credit card

numbers, addresses and all kinds of information that for security reasons, should not be cached

The following tutorial is a step-by-step guide to mastering Partial Page Caching.

Inside this tutorial, you will find several ways to cache you output:

 Partial Page Caching APIs - a general overview of the Caching APIs with usage examples.

 Action Based Partial Page Caching - Cache using buttons and conditions

Zend Platform User Guide

298

Partial Page Caching APIs

Partial Page Caching can also be achieved using the following functions for almost all situations:

Output Caching Functions

Function Action

output_cache_fetch() Gets the code's return value from the cache, if

it is there.

output_cache_output() Calls a function and checks if the function

exists in the cache. Yes - Print No - Puts

function output in cache and prints.

output_cache_exists() Checks if the key exists in the cache. Yes -

Print, No - Runs code, output in cache and

prints until it reaches the stop command:

output_cache_stop().

output_cache_stop() Indicates the end of a block of code.

Data Caching Functions

Function Action

output_cache_put() Enters a single variable into the cache

output_cache_get() Gets the Variable from the cache at the end of

its lifetime.

Invalidate Cache

Function Action

output_cache_remove_key (string key) Respectively remove items from the cache

according to their type (Key, URL or File)

The partial caching functions are divided into two groups, output caching and data caching. This

document will explain each of the two groups and give practical examples of each function call.

Output Caching

The first groups of functions are the output caching functions. These functions capture the output from

a function or block of PHP code and cache it. These functions are:

output_cache_output()

output_cache_exists()

output_cache_stop()

Output caching functions allow programmers to remove the execution of blocks of code with static

output, such as looping over and printing the day’s news headlines. This output changes infrequently,

so instead of reprocessing it for every user caching allows PHP to skip execution and print the results.

Zend Platform

299

Prototype:

void output_cache_output(string key, string code, int lifetime)

The first time output_cache_output() is called, it will execute the function defined in argument two,

and store any output in the cache under the retrieval key specified in argument one. Each subsequent

call to output_cache_output () with the same value as argument one will result in the output of this

cached data instead of the execution of the function in argument two, until the cache lifetime in

argument three expires.

output_cache_output () is typically used to capture the output created by a function call. In order to

use it, you would need to wrap a section of code as a function. When you call output_cache_output (),

it will call this function and cache it's output.

output_cache_output () takes three arguments:

1. The key value with which this output will be cached.

2. The function call.

3. The cache lifetime in seconds.

output_cache_output() has no return value.

Usage Example

<?

function content($time) {

/* Create a function to Wrap the code that produces

 the output */

 print "<p>Cached Time: $time </p>";

 /* The actual value of $time will be printed

 only once every 30 seconds. The output from

 the print statement will be cached, and the

 function call will be ignored until the cache

 lifetime expires */

}

$time = time();

/* Get current time, in seconds */

print "<p>Current Time: $time </p>";

/* Print the real current time */

output_cache_output("Current Time","content($time);",30);

/* Cache all output for the function content() and

 store it based on the key "Current Time" for 30

 seconds */

?>

Usage Notes:

output_cache_output() is used to cache the output generated from functions. To utilize it, wrap a

section of code (which generates the output you wish to cache) as a function. Any output statements

in this new function will be captured into a buffer and stored as cached data with the key specified.

The other two functions, output_cache_exists () and output_cache_stop (), are used in tandem to

simplify the task of caching output from a given section of code.

Zend Platform User Guide

300

Prototype:

boolean output_cache_exists(string key, int lifetime)

void output_cache_stop()

output_cache_exists() is called from a conditional statement. The conditional statement should wrap

the section of code producing the output you are intending to cache.

output_cache_exists() takes two arguments:

1. The key value with which this output will be cached.

2. The cache lifetime in seconds.

output_cache_exists() returns a boolean. TRUE is the key exists, FALSE if it doesn't.

output_cache_stop() takes no arguments.

output_cache_stop() has no return value.

Usage Example

<?

if (!output_cache_exists("Some_Key2", 3)) {

 echo time();

 output_cache_stop(); // Stop buffering...

}

?>

Data Caching

In cases where caching the output from a script isn't possible, we offer a set of functions for caching

data. These functions are output_cache_fetch(), output_cache_put() and output_cache_get().

Data caching allows programmers to skip execution of repetitive database calls, increasing script

performance and reducing overhead on the database. Typical uses of data caching include caching

user preferences, caching product pricing, or any SQL call which changes infrequently.

Prototype:

string output_cache_fetch(string key, string code, int lifetime)

output_cache_fetch() works in a similar manner to the output caching function,

output_cache_output(). The major difference is that instead of caching the output from the function it

caches the return value as a string.

output_cache_fetch() receives 3 arguments:

1. Unique identifier string for the data (string)

2. PHP code to be cached (string)

3. Cache lifetime in seconds (integer)

output_cache_fetch() returns a string containing the return value of the cached code section as

defined in argument 2. The ID, defined in argument 1, serves to differentiate the code section and

give it a name. Lifetime, defined in argument 3, is handled in the same way the Performance module

handles cache lifetimes for all cached files -- cached copies older than the lifetime will be refreshed

when the function is called.

Note:

Unlike normal caching only the return value of the given PHP code is cached.

Zend Platform

301

Usage Example

<?

function get_content($time, $sec, $usec) {

 /* I define an arbitrary function which

 returns data. */

 $data = array();

 $data["time"] = $time;

 $data["sec"] = $sec;

 $data["usec"] = $usec;

 /* Create an array to store the data.

 This is where you would generate the data

 you wish to cache, such as making database

 calls. */

 $ser_data = serialize($data);

 /* serialize the array for return */

 return ($ser_data);

}

$time = time(); /* get current timestamp */

$micro = microtime();

/* get current timestamp

 including microseconds */

list ($usec, $sec) = explode(" ", $micro);

/* Print the real current time */

print "<p>Current Time: $time, $sec, $usec</p>";

$cached_string = output_cache_fetch("Example: Fetch","get_content($time, $sec,

$usec);",30);

/* Call the function via the 'output_cache_fetch()'.

 If the content key exists and the lifetime hasn't

 expired, the function execution will be skipped

 and the cached data will be returned via the cache

 API call. */

$data = unserialize ($cached_string);

/* unserialize the data */

/* Print the cached time */

print "<p>Cached Time: " . $data["time"] . "," . $data["sec"]. "," .$data["usec"] .

"</p>";

print "<p>Refresh to see caching in action!</p>";

?>

The strength of output_cache_fetch is that it allows the developer to offload repetitious database calls

by wrapping these calls in a function. The following example illustrates how this would work.

<?php

/* Note that this code is kept as simple as possible,

 with no return type checks etc., in order to focus

 on the caching features. */

/* Display greetings and read user info from database -

 this part must remain dynamic */

$user_id=($_SESSION['user_id']);

$result = mysql_query("SELECT name,country,airport

Zend Platform User Guide

302

 FROM users

 WHERE id=$user_id");

list($name,$country_id)=mysql_fetch_array($result,MYSQL_ASSOC);

echo "<P>Welcome $name ".date("F j, Y, g:i a") ."</P> ";

/* Note that the code to be cached should be wrapped as

 a single function call (see argument 2 in above

 example) - this is to improve readability and code

 reuse (the code we want to cache is usually longer

 than one line.) */

// Display list of destination countries

$sql = "SELECT id,name FROM countries";

echo "<P>Destinations: ";

$destination_str=output_cache_fetch("destinations","GetQuery('$sql')",3600);

$destination_arr = unserialize($destination_str);

$out = "<P>Destination Airport: <SELECT NAME=\"destination_airport\">";

foreach ($destination_arr as $destination) {

 $out .= "<OPTION VALUE=\""

 .$destination['id']."\">"

 .$destination['name']."</OPTION> ";

 }

$out .= "</SELECT></P> ";

echo $out;

echo "</P>";

/* In the first caching example (above), we cache the

 list of destinations. This is the same for every

 user, and so the cache id is a simple string. In

 the second example (below), the list of airports

 depends on the user's country. So, the country_id

 is added in the ID string. This will create a

 different cache copy for each continent. */

// Display list of airports in the user's home country

$sql = "SELECT id,name FROM airports WHERE country='$country_id'";

$airports_str = output_cache_fetch("airports_$country_id","GetQuery('$sql')",3600);

$airports_arr = unserialize($airports_str);

$out = "<P>Departing Airport: <SELECT NAME=\"depart_airport\"> ";

foreach ($airports_arr as $airport) {

 $out .= "<OPTION VALUE=\"".$airport['id']."\">".$airport['name']."</OPTION> ";

}

$out .= "</SELECT></P> ";

echo $out;

/* This function is more general purpose, meant to be

 used with output_cache_fetch () it performs an SQL

 query and returns the results as a serialized string.*/

function GetQuery ($sql_query) {

 $result = mysql_query($sql_query);

 $res_arr = mysql_fetch_array($result, MYSQL_ASSOC));

 $res_str = serialize($res_arr);

 return $res_str;

}

?>

Zend Platform

303

Usage Notes:

You can use output_cache_fetch() to cache non-string types (e.g. arrays and objects) of PHP variables

by using PHP's serialize() and un-serialize() to convert them to strings and vice versa.

output_cache_fetch requires the code which generates the cache data to be wrapped in a function.

This allows the cache routine to skip the execution of this code if the data is already cached

output_cache_put() and output_cache_get() provide a direct way to store and retrieve data from the

cache.

Prototype:

void output_cache_put(string key, mixed data)

void output_cache_get(string key, int lifetime)

output_cache_put() takes two arguments:

1. The key value with which this data will be cached.

2. The data to be cached. (scalar, string, or serialized data).

output_cache_put() has no return value.

output_cache_get() takes two arguments:

1. The key value with which the data is stored.

2. The lifetime that this data should be considered valid.

output_cache_put() returns the cached data, if it exists and is valid. Otherwise it returns false.

Usage Example

<?

if(($result = output_cache_get("TestFunctionResult", 30)) === false) {

 $result = microtime(); /* Current timestamp */

 print "
<i>Fetching Fresh Content</i>
";

 /* Should only print this every 30 seconds when

 the content is fetched fresh */

 output_cache_put("TestFunctionResult", "Cached: $result");

}

print "$result
";

?>

Usage Notes:

The put/get routines are a simpler method for caching data than output_cache_fetch. They are

typically used for the storage and retrieval of small bits of data.

Zend Platform User Guide

304

Action Based Partial Page Caching

Action Based Partial Page Caching pertains to caching part of an output based on the occurrence of an

action. This type of Caching is necessary in instances where it is preferable to refresh the Cache when

an action occurs rather than time based.

For example: If we have a list of people who are "Currently Online" and we were to use time based

caching, we would have to set an extremely short time limit to make sure that the list is updated at all

times. We would also waste valuable system resources every time we refresh the cache. Instead, we

can adopt a more efficient approach: refreshing the cache based on an action, for instance, every time

a member goes online or logs out.

How do we do this?

There are two "Partial Page Cache" options based on an action:

1. Conditional Partial Page Caching

2. Button Based Partial Page Caching

Conditional Partial Page Caching

With this option, we predetermine conditions for caching and invalidating (If X occurs then do Y).

For example: we can cache our list of people who are "Currently Online" based on their log-on

action. Whenever someone logs-on, their name will be added to the cache. Subsequently, when the

same person logs-off we could set another condition will remove the name from the cache.

The following code example demonstrates how to empty the cache when a certain action occurs:

if (check_some_condition()) {

output_cache_remove_key (...);

}

Button Based Partial Page Caching

With this option, we set a specific button to initiate refreshing the Cache (Pressing button X does Y).

For example: we can cache our list of people who are "Currently Online" based on a specific button

that the person logging-in will press (such as: login, next, go, etc). Whenever someone presses the

button, his or her name will be added to the cache. Subsequently, when the same person presses a

different button, his or her name will be removed from the cache.

The following example demonstrates the button triggered Partial Page Caching technique:

<form action="clean_cache.php">

<input type="submit" value="Clear Cache">

</form>

The 'action' attribute points to the clean_cache.php script. Therefore, when the user submits the form,

clean_cache.php is executed+.

The clean_cache.php clears the cache (with output_cache_remove()) and then builds it again with

fopen("http://..") to get a real cache refresh.

This tutorial detailed Action Based Partial Page Caching, with conditional or button-oriented

options.

Zend Platform

305

About SNMP

Contents:

Available Operations The MIB

SNMP Trap The OID

SNMP Message Structure MIB file Structure

Message Headers Using NET SNMP

The PDU Catching an SNMP Trap

SNMP (Simple Network Management Protocol) is a method of monitoring devices or applications from

a single location, without the need to check each device/application at any given time.

This is done by having an SNMP agent running on each of the monitored devices. A NMS (Network

Management Software/Station) is then installed on a central machine to monitor the activity.

The Rational behind this method is to enable the user (in most cases, the system administrator) to

use the NMS in order to 'operate' the monitored devices.

The SNMP agent can inform the NMS about any occurrence.

Communication between the SNMP agent and the NMS is done using UDP, which makes SNMP

somewhat unreliable and it is up to the SNMP implementation to make sure messages reach their

destination.

Available Operations

The SNMP protocol defines five basic operations (later SNMP include more):

1. Get

2. Get-Next

3. Get-Response

4. Set

5. Trap

The first four operations are available to the NMS and are used to control a monitored device.

The last operation (Trap) is used by the SNMP agent in order to inform the NMS about an occurrence

the device. Traps are employed by Zend Platform’s Event Actions and therefore, will be further

described.

SNMP Trap

The SNMP Trap is used by the SNMP agent in order to inform the NMS about an occurrence on a

device (the same device on which it is installed). An occurrence can be anything ranging from:

"detecting a new device", "device shut down", ”"application crash" or "computer temperature is high".

This facilitates the purpose of sending a trap, which is to transmit only essential data to indicate there

is a problem. The other SNMP commands (like 'set' and 'get') can then be used to investigate the

actual details of the occurrence.

Note:

The following section describes the SNMP V2c message structure which is only slightly different than

the SNMP V1 message structure.

Zend Platform User Guide

306

SNMP Message Structure

All SNMP messages have the same general structure. They are constructed of Message Headers and

the PDU (Protocol Data Unit).

Note:

The PDU may differ in some SNMP operations.

Message Headers

Message Headers contain the following information:

 Version number - Specifies the SNMP version in use (for example '2c').

 Community name - Specifies the access environment for a group of NMSs (for example

'public').

Community names serve as a form of authentication (much like a password).

For example, when the NMS gets an SNMP Trap from an SNMP agent, it checks if the community

name that was sent with the trap is authorized to send this trap from this agent.

The PDU

The PDU is the format for sending data in an SNMP operation.

SNMP PDU structure is as follows:

 PDU type

 Enterprise OID

 Agent Address

 Generic trap number

 Specific trap number

 Up-time

 Variable-binding

The MIB

MIB (Management Information Base) is a hierarchically organized collection of information definitions.

MIBs are a collection of managed objects that are identified by object identifiers.

A managed object represents an element of a device. Managed objects are a collection of one or more

object instances, which are essentially variables.

Why do we need the MIB?

The MIB server as a common ground for both the NMS and the SNMP agent (MIB is saved in a text file

in a specific structure).

The MIB defines the entities that take part in SNMP communication. For example, traps are set in the

MIB file with the definition of the data that can be sent in the trap. This allows the NMS that gets the

trap from the SNMP agent to read and interpret the data.

Zend Platform

307

The OID

The OID (Object ID) is a set of numbers, separated by '.', that together assemble a unique identifier

that identifies a managed object in the MIB hierarchy.

The MIB hierarchy can be depicted as a tree. For example, the OID: 1.3.6.1.4.1.20815 broken down

to each of it's elements, means:

 1 - ISO

 3 - Identified Organization

 6 - DOD

 1 - Internet

 4 - Private

 1 - Enterprise

 20815 - Zend

The first six elements in the OID are constant. Each organization can register itself with an institute

called 'IANA' (Internet Assigned Numbers Authority). Registration with IANA is not mandatory, but

strongly recommended in order to maintain order in the Hierarchy (making sure each organization

uses it's own unique OID).

Registration with IANA is free from: http://www.iana.org/cgi-bin/enterprise.pl).

Each element in the MIB file can be (and is eventually) represented by OID. However, using a MIB file

allows enables to represent each element in a more 'human readable' way.

MIB file Structure

The following is an example of a basic MIB file:

MIB-NAME DEFINITIONS ::= BEGIN

IMPORTS

enterprises

FROM RFC1155-SMI

OBJECT-TYPE, NOTIFICATION-TYPE

FROM RFC-1212;

zend OBJECT IDENTIFIER ::= { enterprises 20815 }

SimpleTrapExample NOTIFICATION-TYPE

 STATUS current

 DESCRIPTION "This is a simple trap example"

::= { zend 1 }

ComplexTrapExample NOTIFICATION-TYPE

 STATUS current

 DESCRIPTION "This is complex trap example with variable-binding in it"

 OBJECTS { IntVariable, StringVariable }

::= { zend 2 }

IntVariable OBJECT-TYPE

 SYNTAX INTEGER

 MAX-ACCESS accessible-for-notify

 STATUS current

 DESCRIPTION "This is an integer variable"

::= { ComplexTrapExample 1 }

StringVariable OBJECT-TYPE

 SYNTAX STRING

 MAX-ACCESS accessible-for-notify

Zend Platform User Guide

308

 STATUS current

 DESCRIPTION "This is a string variable"

::= { ComplexTrapExample 2 }

END

The first line defines the name of the MIB (in the sample file, it's called 'MIB-NAME'). Then, the

required imports are set (the 'enterprise' import actually sets all the required data up to the

'enterprise' level, which is one level above our organization level, in this case - one level above Zend).

From this point, in order to mention the '1.3.6.1.4.1' OID level, all we need to write is 'enterprise', as

illustrated below.

It also imports two 'element' definitions: the NOTIFICATION-TYPE (this is actually a 'trap-type' that

defines a trap) and OBJECT-TYPE (which defines variables).

Once the required data is imported, we can start setting our MIB.

Now we define 'zend' to be the OID 1.3.6.1.4.1.20815 by stating zend OBJECT IDENTIFIER ::= {

enterprises 20815 }

From this point on, we start setting the trap types and the variables.

More detailed information on how to write MIB files can be found in RFC-1212

(http://www.faqs.org/rfcs/rfc1212.html)

Online MIB Validators

Once an MIB file is written it is prudent to pass the MIB file through a MIB validator engine. The

validator engine will check to see if the MIB file is written correctly and validates to content.

There are several online validator engines such as*:

• Online MIB Validator (http://www.muonics.com/Tools/smicheck.php)

• MIB module validation (http://www.simpleweb.org/ietf/mibs/validate/)

*Zend Technologies does not indorse or recommend these sites. The links herein are simply provided

as examples of online providers.

Using NET-SNMP

NET-SNMP is a free implementation of the SNMP protocol. NET-SNMP that can be obtained from

http://www.net-snmp.org/.

Sending an SNMP Trap

Sending a trap using NET-SNMP is quite easy once you know the parameters you need to send and

how.

SNMP traps are sent using the snmptrap command. The syntax is:

snmptrap -v 2c -c <community string> -M <MIB directory> -m <MIB name> <NMS

address:port> <uptime>

 <<MIB name::>Trap name> <<MIB name::>var> <type> <value>

The following describes the different parameters:

 -v - The version of the SNMP protocol to use in order to send the trap.

 -c - The community string to be sent with the trap.

 -M - TThe directory where the MIB is located. If all you want is to add another directory to

the MIB dir list, you should place the plus sign (+) before the directory, like this: -M

+/my/MIB/dir. Multiple MIBs directories are seperated by ':'.

Zend Platform

309

 -m - The MIBs to be used. If all you want is to add another MIB to the list of MIBs used, you

should place the plus sign (+) before the MIB name, like this: -m +MY_MIB_NAME. Multiple

MIBs are separated by ':'.

 NMS address:port - The address and port of the target NMS machine.

 uptime - The time passed since the machine came up or since something happened on the

machine. You can send an empty string as the uptime.

 Trap name - The name / type of the trap you are sending. Generic trap is only used in SNMP

V1, therefore, we only specify the 'specific trap' type. Specifying the MIB name before the

trap name (followed by '::') is used to avoid instances where two traps have the same name

in different MIBs.

 Variable binding variables - The following elements must be sent together or not at all !

(Several variables can be sent in each trap).

• var -The name of the variable in the MIB. Specifying the MIB name before the variable

name (followed by '::') is used to avoid instances where two variables have the same

name in different MIBs.

 type - The type of the variable being sent. Several types are available:

• i - for INTEGER

• u - for UNSIGNED

• c - for COUNTER32

• s - for STRING

• x - for HEX STRING

• d - for DECIMAL STRING

• n - for NULLOBJ

• o - for OBJID

• t - for TIMETICKS

• a - for IPADDRESS

• b - for BITS

 value - The value for the variable being sent.

Catching an SNMP Trap (emulating NMS)

In order to catch a trap, you need an NMS, and in case you don't have one installed, you can use the

'snmptrapd' command.

The command syntax is as follows:

snmptrapd -P -M <MIB directory> -m <MIB name>

The following describes the different parameters:

 -P - This parameter prints formatted incoming traps to stderr (resulting in 'interactive'

output). This option is deprecated and can (should) be replaced with -f -Lo.

 -M - Same as in the snmptrap command.

 -m - Same as in the snmptrap command.

Zend Platform User Guide

310

Other Sources of Information

 SNMP tutorial - Explains what is SNMP and how it works.

 NET-SNMP project home page (http://www.net-snmp.org/)

 Some short tutorial about SNMP (http://www2.rad.com/networks/1999/snmp/index.htm)

 Another, more detailed, tutorial about SNMP

Zend Platform

311

Appendices
Contents:

Appendix A - Troubleshooting Zend Platform

Appendix B - Event Aggregation Mechanism

Appendix C - Zend Platform Support

Appendix D - Network Port Requirements

Zend Platform User Guide

312

Appendix A - Troubleshooting Zend Platform

The following troubleshoot list, covers possible issues that may rise while working with Zend Platform

and using Tunneling. These issues have been listed by category.

Web Server

Possible Issue Recommended Action

Images are not displayed in the

Administration User Interface

(GUI) when using Apache 2.

Add "EnableSendfile Off" to your httpd.conf.

Note: this is not a Platform issue if the Sendfile support is

broken, images of other web pages on the same server will

suffer from the same problem and this action will fix the

problem for the entire server.

Job Queue

The primary tool for investigating Job Queue related issues is the log file. This file is by default located

in $install_prefix/logs/JobQueue.log. The php.ini directive for defining the log file's location is:

zend_monitor.log_dir=.

Possible Issue Recommended Action

API use and queue functionality

Re-queuing job fails

repeatedly

When adding jobs, failure can be caused by various reasons, (e.g.

illegal file path, queue is full etc. Look at the log or

ZendAPI_Queue::getLastError() for error details).

As the failure might be inherent in the job itself, re-queueing the

job won't help in some cases.

Only re-queue when it could solve the problem (e.g. if queue was

full try re-queuing after jobs were removed).

Job that was added to the

queue isn't in it.

Make sure to test the return value of addJob(). addJob() returns

false upon failure.

Use the ZendAPI_Queue::getLastError() which returns the error

string and can help determine if the failure reason is related to the

queue. If so correct the value and check again.

If the failure is due to high load (for example queue is full or

connections get timed out) the relevant JobQueue parameters may

be changed (e.g. higher maximum queue depth or longer timeout).

Another approach is to try scheduling these jobs to a less busy

time.

How can I detect jobs that

had some kind of logical

failure in them?

Logical Job failures (such as an invalid credit card number) can be

detected and tracked if you use the set_job_failed() API. If this

function is called when job is being run, it will show as Logically

Failed in the Administration Console in Job Queues | Jobs..

What happens to jobs that

were dependent on a job that

failed?

When a job fails, all it's dependent jobs will remain in state "waiting

for predecessor", handling such cases is up to the user (possibly fix

the job that failed or run a cleaner job to remove dependent jobs).

What happens to a job that If a job fails logically, but still has recurrences it will keep recurring

Zend Platform

313

Possible Issue Recommended Action

failed logically (e.g. because

database was temporarily

unavailable) but still has

recurrences?

as usual.

A job changes to status

scheduled although it wasn't

scheduled

When job execution failure occurs, due to the re-queuing

mechanism, it's state will immediately change to Scheduled. Job

states will get the status "execution failure" only after it failed all

retries.

Execution retry policy can be configured with the directives:

zend_jq.initial_backoff, zend_jq.backoff_factor,

zend_jq.max_exec_failures

The job isn't performed at the

exact time it was scheduled to

There are no absolute guarantees on job execution times. Jobs are

usually performed very close to their scheduled time, but if the load

is very high the Job Queue prioritizes execution to be delayed to

prevent overloading the system.

The JobQueue's log shows

jobs as complete but the job

didn't do anything.

Jobs may be performed successfully by the JobQueue, but the script

performed might have an error, thus it is best to monitor the fastcgi

processes that perform the jobs to catch these errors (e.g. by

loading a Monitor extension (no need to load other extensions such

as Platform)

The daemon isn't updated

immediately after actions

from the client.

JobQueue is an asynchronous system, therefore you need to allow

time for the commands from the API and other operations to take

place (e.g. need to wait between adding addJob() and getJob())

Performance

Requests from the client

aren't handled quickly by the

daemon.

The "number of requested worker threads" should be adjusted to

the incoming connections load. This is usually the number of

Apache clients, but if the application has jobs that add jobs the

amount should be increased - this also includes the JobQueue's

number of fastcgi clients.

Note: The "number of request worker threads" can be lower than

the max concurrent requests, as connections are queued (currently

up to 30 connections are queued, this can't be configured by the

user).

Jobs from the daemon aren't

handled quickly by the fastcgi

processes

The "number of process workers" should equal the number of max

fastcgi processes. A lower number may mean under-utilization of

the fastcgi processes.

Is there a limit to the number

of jobs that can be stored?

The JobQueue is reliant on the MySQL database that contains the

jobs, and therefore, database capacity etc. must be taken into

account to set the amount of Jobs to suit the database's capacity

(such as determining history cleanup times etc.).

JobQueue shows low

performance

Make sure your hardware can handle the load and that there are

enough:

 Threads to support the configuration for process workers

and request workers

Zend Platform User Guide

314

Possible Issue Recommended Action

 Memory

 Disk space

General

There is no communication

between client and daemon

Communication between the client and daemon is via TCP, make

sure it's configured correctly (ports, firewalls etc.) and that the

requests reach the daemon.

A simple way to verify this is to increase the JobQueue log verbosity

level and check for messages about connections received. If there

are none, the request hasn't reached the JobQueue daemon.

Session Clustering

The ModCluster PHP extension when associated with a webserver (like Apache) communicates with

the SCD (Session Cluster Daemon.)

There are two log files that may be checked for problems:

 modcluster.log (associated with the ModCluster extention output)

 ZendSessionManager.log (associated with the SCD output)

The modcluster log hardly every shows hard errors, however, the following actions can be tracked:

 Connectivity with local SCD

 Cookies, received from clients

The level of debug messages in the logs is defined by the following zend.ini directives:

 ModCluster - mod_cluster.verbosity_level (0-5) [1] (the log level can be changed only upon

restart)

 SCD - mod_cluster.daemon.verbosity_level (0-5) [1] (0 - CRITICAL and WARNING, 1 -

informative, others - debug. The debug level can be adjusted in runtime (see the section

about messenger), log rotation is possible also.

The logs are saved in the location defined by the directive: zend_monitor.log_dir.

On a single session clustering machine, there can be several Modcluster processes (up to hundreds)

talking to the SCD. They are forked as parts of the Apache processes. The SCD daemon can run

several threads as defined in the zend.ini directive mod_cluster.number_of_threads.

As a general guideline, this number can match the count of "virtual" CPUs installed on the system, so

if the system has 1 hyper-threading CPU, the number of threads can be set to 2.

Raising this value higher WILL NOT significantly improve the overall system throughput, since each

SCD thread is already designed to support multiple MC clients.

Zend Platform

315

ModCluster communicates with the SCD via UNIX domain (much faster) or TCP sockets on UNIX and

TCP sockets on Windows. This is set by the directive: mod_cluster.network.use_unix_sockets=0.

The UNIX domain socket appears as a file in the location, set by the directive: zend_temp_dir. If, for

some reason you are unable to use the socket (or using Windows), a TCP port for the local

communication is set in the directive: mod_cluster.network.tcp_port_local [23456].

Possible Issue Recommended Action

SC in cluster is not

working

Check that all Nodes have the same SC version installed (both modcluster and

SCD)

SCD cannot be

contacted

Check the mod_cluster.network.unix_socket_permissions (octal) [0600] and

change the permissions and perform scd.sh restart.

No connection can

be made between

SCD's

Check the mod_cluster.allowed_hosts, and make sure it includes the Node IP of

the calling SC daemon.

SCDs are not

communicating

All the appropriate ports must be open at the appropriate levels of the cluster

network in order for the cluster to operate properly. Firewalls in particular can

block essential ports so that the SCD's will not be able to communicate with

one another. The local firewall (on the machine itself) needs to be opened for at

least 2 of the 3 used ports (the messenger's TCP port is less essential, but

recommended). Any firewall that sits between any 2 SCDs must be configured

so that the appropriate ports are open or the SCD's will not be able to

communicate.

Logs show that

sessions cannot be

written to the

disk.

check HD space available, quota, and the following directive:

mod_cluster.storage.save_path - it might be full or without permissions for the

SCD daemon running under: System user / Apache user. This might be solved

by running as root, or giving another location for the Sessions [for instance

/tmp/zend_sessions/].

No backup was

found for HA mode

sessions

Check if the broadcast is being received in one of the other nodes.

Accelerator

Possible Issue Recommended Action

Received Error Message: Cannot

communicate with reporting daemon.

Reporting disabled. Please restart httpd

to re-enable reporting.

The connection to the monitoring reporting process was

broken. This happens when daemon process is either

dead or can not timely respond to events sent to it

(either stuck or overloaded).

Immediate work-around would be to, restart Apache,

that will launch a new copy of reporting process. Also

examine logs for the evidence of reporting process

logging any errors or crashing.

Zend Platform User Guide

316

The Communication Tunnel

The Communication Tunnel includes settings in Zend Platform and Zend Studio. The following lists the

possible causes and solutions depending on the origin of the problem.

Troubleshooting Studio

If Studio is unable to connect to the target server, you will get an error message with the response

from the server. The table below describes the most likely causes and recommended actions for

successfully establishing a connection with the target server.

Possible Issue Recommended Action

The server address or the

port you entered is

incorrect.

Enter the correct server information in the Tunneling Settings dialog.

HTTP authentication is

required.

Enter authentication information in the Tunneling Settings dialog box;

then click the 'Send authentication information' checkbox.

The dummy file content or

location on the server is

incorrect.

The dummy file on the server side was changed or does not exist. You

will need to insure that the correct dummy file with the correct content

is placed in the correct directory on the target server (The correct

dummy file is created and located properly as part of the Installation

procedure. The problem here is post-installation).

You are not allowed to

connect with the server

via the Communication

Tunnel.

You must have tunneling permissions in the Zend Platform Allowed

Hosts Studio Server | Settings.

Troubleshooting Platform

If Platform is unable to communicate, there are a number of possible reasons. The table below

describes the likely reasons and suggests possible solutions.

Possible Issue Recommended Action

Zend Studio is not running. Run Studio.

The version of Zend Studio you are

using is lower than 4.0.0.

Please install a newer version, if available. Platform’s

interface with Studio requires Studio 4.0 (or higher).

Port for auto detection not the same

Check that Studio is listening to the same port as the one to

which you are trying to connect.

Some other failure happened in the

browser or in the Zend Studio

Use manual settings and if that doesn't work contact Zend

Support

Zend Platform

317

Appendix B - Event Aggregation Mechanism

This appendix covers the event aggregation mechanism in the Central Server. It will try to answer the

fundamental question: "When are two events considered to be of the same origin (or cause) and

therefore reported as one?"

Event properties

To answer this question we first have to define the different properties (or attributes) that define an

event. Here is a list of the attributes that are used for aggregation along with a short definition:

 Event type - the type of the error that triggered the event (PHP error, Function error etc').

Perhaps the most important property since it also determines which other properties will be

compared.

 Source file, Line number - the name of the PHP file and the line that contains the code that

triggered the event. This file may not be the file that the user requested. Not all events have

code location - e.g., "slow script" events and other events related to the whole script do not.

 Function name - the name of the function that contains the code that triggered the event. If

the event happened in the global scope it's reported in the 'main' function.

 Location - one of two: either the server id of the server that triggered the event or the group

id if the server belonging to an aggregated group.

 Aggregation Hint - this is a string that is supplied by the user to differentiate between pages

that have the same URL but different parameters. If the user did not supply a hint the default

hint is an empty string (The limit for Aggregation hints is 255 chars, longer hints will not be

aggregated).

 Error text - the error text that was attached to the event.

 Script id - refers to the record for the script that the user requested (i.e., derived from

original request URL).

 Severity - the severity of the event - currently, has two levels - regular and severe.

Another property that is taken into account is the event status. Only events that are not closed are

aggregated.

Events are not aggregated when they are one of the following:

 Events of different types.

 Events that happened on different non-aggregated servers.

 Events with different aggregation hints.

 Events with different severity.

Zend Platform User Guide

318

Zend Error Events

The following properties must be equal for events that are of type "zenderror":

1. Type (note: this is a Zend error type, like E_WARNING, not monitor error type)

2. Source file

3. Line number

4. Function name

5. Location

6. Aggregation hint

The Error text attribute must be 75% similar. (To learn more about text similarity read

http://uk.php.net/manual/en/function.similar-text.php)

Function Error Events

The following properties must be equal for events that are of type "funcerror" or "dberror":

1. Source file

2. Line number

3. Function name

4. Location

5. Aggregation hint

If one of the events has an Error text attribute than the Error texts must be the same (not similar!).

Long Function Events

The following properties must be equal for events that are of type "longfunction" or "longquery":

1. Script id

2. Source file

3. Line number

4. Function name

5. Location

6. Aggregation hint

7. Severity

Custom Events

The following properties must be equal for custom events:

1. Type (this is the first parameter user provides)

2. Severity

3. Event text

4. Source file

5. Line number

Additional Events

The rest of the events are aggregated according to following attributes if two conditions are met:

1. The event type is one of the following: "devmem", "memsize", "devscript", "outsize" or

"longscript".

2. The event has a script id attribute

For these events the following attributes must be equal:

1. Type

2. Script id

3. Location

4. Severity

Zend Platform

319

Appendix C - Zend Platform Support

Platform Support provides Product owners and prospective Product owners with information

regarding: System Requirements, Installation Instructions, General FAQ, Quick Start Guide and much

more.

Visit: http://www.zend.com/support/support_platform.php

Zend Support Center

The Zend Support Center is your online destination for information and assistance for Zend's best-of-

breed PHP products and technologies:

 Knowledge Base

 Support FAQ

 Submit a Support Ticket

Visit: http://www.zend.com/en/support-center/

http://www.zend.com/en/support-center/

Zend Platform User Guide

320

Appendix D - Network Port Requirements

Platform utilizes several network ports for regular component operation. The Platform installer

automatically defines these ports based on default settings that are located in the zend.ini.

To change the port settings, open the zend.ini and locate the port number (ports are assigned a

specific directive).

The following table lists the ports by component and zend.ini directive.

Component Directive Port

Number

Description

Session

Clustering

mod_cluster.network.tcp_port_remote 34567 Data communication

between nodes.

 mod_cluster.network.tcp_port_local

(UNIX, LINUX and MAC only)

23456 Internal data

communication (scd and

mod_cluster), when NOT

using UNIX sockets (the

default on UNIX is to use

UNIX sockets)

 mod_cluster.message_server_port 10002 Messaging service

 mod_cluster.ha.udp_port 45678 HA broadcast (UDP)

Job Queue zend_jq.port 10003 Incoming connections for

data communication, tcp.

 zend_jq.message_server_port 10004 Incoming connections for

messaging service, tcp.

Monitoring zend_monitor.collector_port 10010 Incoming/outgoing traffic.

On Central allow incoming

traffic from nodes to port

10010, tcp.

On Nodes allow outgoing

traffic to central, tcp, port

10010.

Debugger The port number is controlled by the

Studio Client preferences.

10000 Direct connections without

Tunneling.

Allow outgoing connections

from the debug server to

the <studio client IP>, port

10000, tcp.

Note: may require an

available outbound tcp

connection to the internet.

 zend_debugger.tunnel_min_port (default

1024) zend_debugger.tunnel_max_port

(default 65535)

(UNIX, LINUX and MAC only)

1024-

65535

Connections using

Tunneling.

Allow connections from

node to "tunnel server"

(specify "return host" in

Studio tunneling settings),

Zend Platform

321

Component Directive Port

Number

Description

to "tcp port range" where a

"tcp port range" is defined.

General Comments

 The Firewall should be set to not drop idle connections between the nodes/central (internal in

the cluster).

 All nodes/central servers should allow connections to themselves (accept connections to

127.0.0.1).

323

Index

of Requested...................................... 199

of Served... 199

A

Absolute65, 67, 74

accelerated118, 127

acceleration127, 138

Acceleration Blacklist.............................. 138

Acceleration Blacklist Files....................... 127

Accelerator Memory 114

Accelerator Performance Tuning Level 149

Action...85

Action Rule parameters.............................85

Action Types ...85

Actions Rules...85

Add Jobs... 199

Add/Edit Users...30

additional performance 182

Additional Rules67, 68, 76

admin...34

Aggregate Hint......................................89

Aggregate Hints..................................... 101

Aggregate servers....................................53

Aggregation ..79

Aggregation Rules.................................89

Alert Rule..65

Alert Rule event types65

Alert Rules .. 24, 81

Alert Window 47, 57

Alerts ..57

All ..53

All Files...................................114, 118, 127

ALLGET... 134

allowed...28

Allowed Hosts.. 154

Allowed Hosts for Tunneling 154

ALLSESSION ... 134

Always.. 154

Always Report Errors68

Analyze Site143, 146

Apache ...76

Apache Server MaxClients 114

API.. 65, 79, 101

Array.. 134

audit trail ..89

authentication 159

Authentication Information 159

Auto detect... 165

Auto Detection Port...........................26, 157

Auto-detect... 26

Automatically Connect on Startup............ 159

Auto-refresh ... 26

average.. 67

Average Time in Queue 199

Average Waiting Time 199

B

Backtrace ... 89

bandwidth 145, 216

Bar graphs.. 55

Benchmark ... 144

Blacklist .. 118, 138

Blacklisted .. 127

bottlenecks ..65, 71

Bridge .. 223

Broadcasting Port 159

C

Cache .. 127

Cache Cleaner....................................... 134

Cache Lifetime 134

Cached...................................114, 118, 127

cached files.................................... 118, 127

Caching.. 134

caching conditions 127, 134

Cancel.. 127

Central.. 23

central machine....................................... 34

central registration 34

Change and Define Virtual Hosts.............. 133

Change Event Report Information............ 100

Change Server 8, 40, 149

Choosing and Defining Alert Rules 65

Clean ... 127

Client154, 156, 157, 165

Client Debug Port 159

Client IP ... 159

Client Side Caching 104

Client-side caching................................. 120

Clone ... 171

Clone Configurations 171

Clone Settings....................................... 171

Zend Platform User Guide

324

Clone Wizard24, 171

Close Event 60, 89

Close Selected.......................................57

Cluster Name .. 186

Code Acceleration106, 114, 144

Code Acceleration Enabled 114

Code Acceleration Settings...................... 114

communication157, 165

communication tunnel156, 157, 159

Completed Jobs 199

compressed....................................118, 127

compression............................118, 127, 138

Compression Blacklist............................. 138

Compression Blacklist Files...................... 127

Compression Test 113, 143, 144, 146

Compression Test results 146

concurrent jobs...............................145, 216

Concurrent Requests145, 216

configuration23, 167

Configuration and Management Tools24

configuration settings24

configurations.. 127

configure .. 23, 24

Configure Alert Rules.....................24, 47, 81

Configure communication........................ 157

configure groups......................................24

Configure performance 114

Configure PHP Settings24

Configure Preferences for Tunneling 157

configure security settings83

Configuring Zend Studio Client Tunneling

Settings ... 159

Confirm Password30

Connection errors75

Console23, 24, 106, 113

Content .. 134

Content Caching 144

Context ..83

Cookie134, 144, 157

CPU..67

CPU Load...89

create a New Group32

critical situations......................................78

Current Blacklisted Files.......................... 138

Current Existing Users28

Current Jobs.. 199

Current Settings 133

Custom... 149

Custom Event ... 65

Custom events79, 89

D

daemon.. 223

Dashboard .. 26

data... 114

Database...53, 76

database cleanup.................................. 57

Database Error65, 75

database function errors........................... 75

Database Maintenance 60

Database selection errors 75

databases... 75

Deactivate compression.......................... 118

debug ... 156, 157

Debug Mode.. 159

Debug Preferences................................. 159

Debug Studio Port 165

Debug URL.. 89

Debugger................................89, 154, 159

Debugger Server URL............................. 159

Default Cache Lifetime 114, 134

default configurations 81

Default Dynamic Caching Conditions 114

define .. 24

Define Action Types 85

Define Action Types/ Rules 24

Define Alert Rules................................. 81

Define Cache... 127

Define Caching Settings.......................... 127

delayed write...................................... 182

Delete Event60, 89

Delete Selected..................................... 57

Denied Hosts .. 154

deny tunneling 154

diagnostic ... 89

directives.. 167

Disable an Action Rule.............................. 85

disable monitoring 97

Dismatch.. 134

distribute configurations 24

Do not Cache .. 127

do not monitor .. 97

document root 127

Download 145, 216

Download Server 145, 216

Download tab................................. 145, 216

Download Test113, 145, 216

Index

325

Dummy File... 159

Duration ... 144

Dynamic ... 134

Dynamic Caching Enabled114, 134

Dynamic Content Caching 106, 114, 118, 134,

144

Dynamic Content Caching Settings........... 114

E

edit ... 26, 28, 156

Editing a User..30

Editing Groups...32

Editing Users ...30

e-mail 24, 26, 85, 89, 143

Email Report ...85

Encrypt Communications using SSL.......... 159

End User...53

Enhanced.. 149

Environment.. 223

Error Description...................................89

error-reporting criteria..............................68

Errors...68

establish ... 156

establish a communication tunnel 157

Event68, 70, 71, 74, 76, 77, 78

Event Context..83

Event Data ..89

Event List.. 26, 57

Event Name ..53

Event Occurrence Info89

Event Report24, 85, 89, 100

Event Reports.................................... 85, 89

Event Summary............................... 47, 53

Event Summary table53

Event Type 57, 81

Event Types ..81

events53, 57, 75, 78, 83, 101

Events From 57, 81

Excess Memory..74

Excess Memory Usage 65, 74

exclude files from being monitored.............97

expandable lists..................................... 167

expire...26

extensions .. 114

Extreme.. 149

F

failure recovery................................... 182

File Compression.............. 106, 114, 118, 144

File Settings .. 127

File View.. 106, 127

Filter .. 25

Filtering...53, 57

Filtering Alert Rules.............................. 81

Filtering Table Data.................................. 53

Fine Tune Caching Conditions.................. 127

firewall ... 157

Full Filepath Identification....................... 114

Full Page Content Caching 134

function.. 76

Function Data 89

Function Error ... 65

function errors70, 75

Function Execution................................... 71

Function Usage.. 79

functions .. 70

G

General database function errors 75

Get ..134, 144, 157

Getting Support... 7

Global Events.. 101

global settings23, 26

global variable....................................... 101

graphical representatio 47

graphical representation47, 55

Graphs ..24, 47

Gray .. 25

Green... 25

Group ... 25, 28, 53

Group Name ... 28

groups .. 23

GUI.. 34

gzip ... 118

H

Handle Groups .. 28

Hard errors ... 68

health ..23, 78

Host... 53

host machine .. 165

HTTP Authentication........................ 144, 159

HTTP headers.. 170

HTTP Server.. 127

I

IDE.. 156

Ignore Event......................................60, 89

Ignore Selected 57

Included Files 89

Inconsistent Output Size65, 77

Zend Platform User Guide

326

information ...7

Integration89, 157

investigating ...89

IP 26, 154, 156, 165

J

Java Bridge25, 223

Java Environment 223

Java Home.. 223

Java Status ... 223

Java Vendor .. 223

Java Version.. 223

Job-Queue... 194

Jobs .. 194

K

Knowledge Base.................................. 242

L

Last Download................................145, 216

licenses ..26

Load Average 65, 78

load balancer... 157

locking .. 182

Log .. 114

Log File... 114

login...28

M

Manage Cluster..24

management 23, 28

Manual Override60

Match ... 134

Max Clients145, 216

MaxClients .. 114

Maximum Accelerated Files 114

Maximum Cache Size114, 134

Maximum Cached File Size114, 134

Memory ..74

Memory Reclaim Threshold 114

Method ...26

Minimum File Size 114

Minimum Free Disk space........................ 134

Minimum Free Diskspace 114

Modified File Detection............................ 114

Monitor... 78, 81

monitor_set_aggregation_hint 101

Monitoring 26, 47, 114

multiple users..28

N

N/A Test Results 146

Net Mask .. 154

Never... 154

New Group ... 32

New Users .. 30

node 23, 106, 114, 154

None... 114, 118

Normal... 149

Notices... 68

Number of alerts 26

O

on demand 156, 165

On Demand Connection.......................... 165

On-Demand .. 156

On-Demand Communication 156

Only Cached Files 114, 118

Operating System.................................... 25

operator ... 68

Optimizer ... 25

Orange... 25

OS Name.. 223

OS Version 170, 223

output site.. 53

Output Size... 65

P

parameters 83, 157

Partial Page Content Caching 134

passing .. 26

Password............................ 30, 34, 159, 167

Password Administration........................... 34

Password Specifications............................ 34

Password Structure.................................. 34

Performance 106, 113, 127, 143, 144, 146,

194

performance configurations.............. 106, 127

Performance Console 113

Performance Lifecycle 81

Performance Monitoring Event........ 67, 71, 74

Performance Test 113, 146

Performance Test results 146

Performance Tuning............................... 149

Permission Group 28

permissions30, 32

Permissions Group................................... 30

PHP ..53, 167

PHP Certification 242

PHP compilation 170

PHP environment................................... 170

PHP Error ..65, 68

PHP events ... 53

Index

327

PHP function..71

PHP Info ... 170

PHP Intelligence47

PHP Manual... 242

PHP Section... 167

PHP Settings24, 167

PHP Version ..25

PHP Yellow Pages 242

php.ini.. 167

Pie ...55

Pop-up Blocker 8, 40

Port..156, 159, 165

Preferences...23

Preserve Event......................................89

Preserve Selected57

Previous Test Results 146

processes................................... 67, 78, 194

Product directives 167

Production ..70

profile 89, 156, 157

Profile URL ..89

Q

QA ... 68, 70

Quantity (Qty.) of Saves 186

Quantity (Qty.) of Sessions 186

Query Execution 65, 76

Queue .. 199

Queues.. 194

Quick Clone... 106

R

Red ..25

Refresh... 223

regexp.. 134

registration ...34

Regular Expression................................. 134

Regular Expressions Format 134

Relative .. 65, 74

Relative Events.................................. 74, 77

Remove ..28

Reopen Event ..89

Reopen Selected57

reports ... 114

REQUEST .. 134

Requested URL......................................89

resolving events....................................89

Restart ... 223

Restore Defaults 127

rule-based notification85

Rules ...81, 85

S

Save .. 127

scheduling .. 194

script ... 144

scripts...74, 79

Security ..83, 89

Selective .. 154

Send a report via e-mail 85

sending the information............................ 85

Server....................................... 25, 53, 134

Server Address.. 25

Server by name....................................... 53

Server Name......................................25, 53

Server Response Timeout 159

Server Status...................................23, 25

servers ... 23

SESSION 134, 144

Session Clustering 182

Session Clustering Statistics 186

session data 182

Session Size.. 186

Sessions ... 182

settings24, 106, 114, 154, 194, 199

severe event ... 70

severe problems...................................... 24

Severity .. 57

Severity Level 89

shortcuts .. 23

Show Source Code 89

silence operator....................................... 68

silenced.. 68

simulation...................................... 145, 216

Site Analysis ... 146

Site Analysis Report 146

slow function... 67

Slow Function Execution65, 71

slow queries.. 65

Slow Query ... 76

Slow Query Execution 65, 71, 76

Slow Script Execution............................... 67

Slow Script Execution Absolute.................. 65

Slow Script Execution Relative................... 65

solve problems.. 7

source code .. 89

Source Info... 89

Specify Return Host 159

SSL.. 159

Zend Platform User Guide

328

SSL encryption 159

Standalone Central...................................26

Start .. 223

Statistics.................................186, 199, 223

Status25, 57, 89, 223

Status indicator25

Stop... 223

Structure ..34

Studio .. 156

Studio Client154, 156, 159

Studio Client Tunneling........................... 159

Studio Server .. 154

Studio Server parameters26, 157

Studio Server Settings............................ 154

Submit a report to a Specified URL.............85

Support ..7

Support Center 7, 242

Support Ticket ...24

Support Tool 7, 24

supported databases76

Suppress ..67

Suspend ... 199

synchronizing session data 182

system health.................................... 24, 26

System Health Overview...........................24

system information23

System Passwords34

T

table ..53

Test26, 144, 145, 157, 216

Test Download.........................143, 145, 216

Test functions.. 113

Test Report145, 216

Test Results 144, 145, 146, 216

Test URL 89, 143, 144

Testing 106, 143, 145, 146, 216

Time Filter ..57

Title ..89

Tool ...7

Top Alerts ...24

Tree View ... 127

Tuning.. 149

Tunnel Target Host................................. 159

Tunnel Target Port 159

Tunneling........................ 154, 156, 157, 159

U

Undo .. 127

Ungrouped ..53

un-zipped ... 118

update ... 133

Update Blacklists 127

Update the Blacklist 138

Update Virtual Hosts List 133

URL24, 85, 144, 145, 216

Useful Links .. 24

User... 28

User Forums ... 7

User Management...................... 23, 28, 32

User Name....................................... 30, 159

users ...23, 30

V

variable matches 134

Variables 89, 100, 134, 144

variables data 100

vhost .. 89

View Tree By field.................................. 171

Virtual Host 57, 133

Virtual Hosts ... 127

Virtual Hosts List 127

W

Warnings.. 68

Watched Functions................................... 70

Web application..................................... 144

Web Cluster .. 182

Web Server... 25

wildcards .. 154

write through 182

X

XML .. 89

XML data .. 85

XML Report ... 85

Y

Yellow Pages 242

Z

ZDS .. 145, 216

Zend Central ... 23

Zend Debug Port 26

Zend Dev Zone.................................... 242

Zend Download Server106, 114, 143

Zend Engine ... 25

Zend Error .. 89

Zend Forums....................................... 242

Zend Framework................................. 242

Zend Monitor .. 81

Zend password.. 26

Zend Platform ... 24

Index

329

Zend Platform Settings 165

Zend Product directives 167

Zend products 23, 25

ZEND Section .. 167

Zend Store..24

Zend Studio....................................89, 159

Zend Studio Client 26, 156, 159, 165

Zend Studio IDE 157

Zend Studio Integration 157

Zend Technical Support 24

zend.ini .. 167

	Zend Platform
	Contribute to the Documentation
	 Introduction
	Preface
	 Software and Hardware Requirements
	About Platform
	Navigation
	A Central Control Center
	 Standard and Enterprise Servers

	 Support Tool
	 Getting Support

	Change Server

	 Overview
	Environments
	 Architecture
	 Central Server
	 Nodes
	 Central-Node Communication
	Platform Administration, a Single Point of Access

	 Getting Started
	 Configuration Check List
	 Performance Lifecycle Check List

	 Performance Management Server
	 Platform Tab
	Dashboard
	 Status
	 Preferences
	Preferences Fields and Functions

	 User Management
	Adding and Editing Users
	Adding a User
	Editing a User

	 Adding and Editing Groups
	 User Settings
	Password Administration

	 Cluster Management
	 Server Management
	Adding a Server
	 Removing a Server
	Changing a Server

	Group Management
	 VHost Management
	Restricting Access to Virtual Hosts
	 Change Server

	 License Management
	About License Management
	 Manage License
	 Acquiring a License
	 Updating a License

	 PHP Intelligence
	 Event Trigger Settings and Analysis
	Calibrating Event Triggers for Performance Optimization
	Investigating Performance Related Events
	 Profiling PHP Code with Studio
	Understanding Profiler Results

	Why Configure Event Triggers?
	Finding Events that Interest You
	The Problem Resolution Lifecycle
	 System Health
	Aggregation Groups

	 Graphs
	Graph Behavior
	 Generating Graphs

	 Event List
	Filtering by Virtual Host
	Working with the Event List
	 Database Maintenance
	 Change Virtual Host

	 Event Triggers
	Creating Events
	Configuring Events
	Disabling Events (Triggers)
	List Entry of Watched Functions

	 Filtering Event Triggers

	 Event Types
	Choosing and Defining Events
	 Slow Script Execution (Absolute and Relative)
	 PHP Error
	 Java Exception
	 Function Error
	 Slow Function Execution
	 Slow Content Download
	 Maximum Apache Processes Exceeded
	 Excess Memory Usage (Absolute and Relative)
	 Database Error
	 Slow Query Execution
	 Inconsistent Output Size
	 Load Average
	 Custom Events
	 HTTP Error
	Setting up HTTP Error Events

	 Security
	Why Configure Security Settings?
	 Configuring Security Settings

	 Event Actions
	 Defining Actions
	 Defining Action Rules

	 Event Details
	General Information
	Event Occurrence Info
	 Zend Studio Diagnostics
	 Event Context
	Function Data
	Variables
	 Backtrace
	Included Files
	Show Source Code
	 Event Administration
	Reproduce Event on Another Server
	 Controlling Information Displayed in an Event
	 Customizing Events
	Custom Events
	Event Callbacks
	Register and Un-register User Event Handlers

	 Change Event Details
	 Aggregate Hints
	 Event Aggregation Rules
	Event Diagnostics Settings

	 Performance
	Overview
	 Performance
	 Performance Lifecycle
	 Implementing the Performance Lifecycle
	Benchmark - Site Analysis

	 Performance Optimization Tools
	 Configuring Performance
	Performance Tab

	 Performance Console
	 Settings
	Code Acceleration Settings
	Full Page Caching
	Partial Caching
	File Compression
	 Code Acceleration
	When Should Files be Accelerated?
	When Not to Accelerate (Blacklist)?
	 Accelerator Duplicate Functions Fix

	 File Compression
	 Code Compression
	Setting Code Compression

	 Content Caching
	 Caching Alternatives
	 Caching with the File View
	 Caching with the Performance Test Reports
	 Zend Cache Extension
	Disk/Shared-Memory Caching
	'namespace' Support

	Cache Folder Depth Configuration
	ETag/"Last modified" headers support
	 Tree View
	Tree View - Virtual Hosts List

	 File View - Dynamic Content Caching
	Define Caching Settings:
	 Modify File Settings
	Fine Tune Caching Conditions
	Define files to Blacklist

	 Change and Define Virtual Hosts
	 Dynamic Content Caching
	Caching Definitions

	 Blacklists
	When to Blacklist Files

	 URLs
	Caching Options
	 Add New URL Caching Conditions Options

	 Testing
	 Test URL
	Additional Variables
	 Test Download
	Viewing Download Test Results

	Analyze Site (Benchmark)
	Test Results
	Performance Test
	Compression Test
	Show Last Test Reports

	 Tuning
	 Accelerator Performance Level Descriptions

	Tuning Performance in i5 OS
	 Zend Optimizer

	 Configuration Tab
	 Studio Settings
	Tunneling (Communication Settings)
	 Configuring Preferences for Tunneling
	 Configuring Tunneling with Studio
	Studio for Eclipse 6.0
	Debug Preferences

	 Studio 5.5
	 Debug Preferences

	 On Demand Connection
	 Debugger Tunneling Port Limits
	 PHP Configuration
	Configuring Settings for a Server (Node)

	 PHP Info
	 Clone Wizard

	 Web Services
	System Requirements
	 General Tasks
	 Get/Set Actions
	 Add/Remove Server Actions
	Event Handling
	 Using Web Services

	 Enterprise Server
	 Session Clustering
	What is Session Clustering?
	Cluster Configuration
	Adding New Servers to the Session Clustering Environment

	Session Clustering and HA (High Availability)
	 About HA

	Session Clustering Statistics
	 Session Clustering Settings
	General Settings
	Storage Settings
	Network Settings

	 The Importance of Session IDs
	Session Key Format

	 Session Clustering Storage Models
	Memory
	Write Through
	Delayed Write

	 Defining Storage Models
	Fine Tuning Session Clustering
	Fine Tuning Options

	 Job Queues
	 Jobs
	Additional Information

	 Job Queue API
	 Job Management
	Queues
	Queue Details and Statistics
	Queue Operations

	 Jobs Tab
	Job Details
	Job Details Page Components
	Job Details Page Buttons:

	 Job Queue Settings
	 Viewing Queue Settings
	Editing Queues

	 Zend Download Server (ZDS)
	Configuring the Zend Download Server (ZDS)
	 Manual Mode
	Transparent Mode

	ZDS Settings
	 Testing the ZDS
	Running a Test

	Test Download
	Viewing Download Test Results

	 Understanding Test Results

	 Integration Server
	 Java Bridge
	 About the Java Bridge Technology
	Platform Node
	 J2EE Application Server
	 Added Value

	Operating and Configuring
	 Java Status Page
	 Working with the Java Bridge User Interface
	Configuring the Java Bridge

	 Common Tasks
	Usage Scenarios
	Activities
	Example 1: Typical Code
	Example 2: A Case Study Java Bridge Performance
	 Example 3: Case Study in Management Integration

	Usability Issues
	Chain Functions Call
	Exceptions
	Java Array/Hashtable Objects
	 Iterators

	 BIRT Reports
	Using BIRT
	 BIRT Reports Tab
	Report Examples
	Report Code

	 Setting-Up the BIRT Report Engine
	 BIRT Report Examples
	Sales Invoice (html)
	Top Selling Products (embedded html)
	Product Catalog (PDF)
	 Product Catalog (using caching)

	 Reference
	Useful Links
	 Zend Platform Built-In Services and Extensions
	 Setup Tool
	Running the Setup Tool

	Services
	Java Bridge
	Session Clustering
	Job Queues
	Cache Cleaner
	Collector Center

	Extensions
	zend_extension_manager.optimizer
	zend_extension_manager.download_server (not applicable in Windows)
	zend_extension_manager.platform
	zend_extension_manager.monitor
	 Zend Platform Action (Windows Only)
	Zend Platform Pinger (Windows Only)
	Zend Platform Collector Center
	Zend Platform Node Collector

	 Deprecated Caching APIs and Directives
	Deprecated Functions
	Deprecated Directives

	 APIs
	 Accelerator Functions
	Output Cache Functions
	Zend Cache Functions
	Full Page Caching Functions
	 Monitor Functions
	 ZDS Functions
	 Java Bridge Functions
	Job Queue Functions
	Global Functions and Constants
	Queue Class
	Job Class

	BIRT Report Functions

	 Directives
	 Accelerator Directives
	 Zend Cache Directives
	 Full Page Caching Directives
	 Monitor Directives
	Zend Monitor Event Types

	 Platform Administration Directives
	 Collector Center Directives
	 Debugger Directives
	 ZDS Directives
	Java Bridge Directives
	 Session Clustering Directives
	Additional Information

	 Job Queue Directives

	 Tutorials
	 Integrating Existing and Legacy Applications
	 Calling an EJB on Websphere from PHP
	Partial and Preemptive Page Caching
	 Partial Page Caching APIs
	Output Caching
	Data Caching

	 Action Based Partial Page Caching
	Conditional Partial Page Caching
	Button Based Partial Page Caching

	 About SNMP
	Available Operations
	SNMP Trap
	 SNMP Message Structure
	Message Headers
	The PDU
	The MIB
	Why do we need the MIB?
	 The OID
	MIB file Structure

	Online MIB Validators
	Using NET-SNMP
	Sending an SNMP Trap
	Catching an SNMP Trap (emulating NMS)

	 Other Sources of Information

	 Appendices
	Appendix A - Troubleshooting Zend Platform
	Web Server
	Job Queue
	Session Clustering
	Accelerator
	 The Communication Tunnel
	Troubleshooting Studio
	Troubleshooting Platform

	 Appendix B - Event Aggregation Mechanism
	Event properties
	 Zend Error Events
	Function Error Events
	Long Function Events
	Custom Events
	Additional Events

	 Appendix C - Zend Platform Support
	Zend Support Center

	 Appendix D - Network Port Requirements

	Index
	
	

