

w w w . z e n d . c o m

Zend Core for i5/OSTM

User Guide:

Zend Core 2.5 for i5/OS

By Zend Technologies

Disclaimer

The information in this document is subject to change without notice and does

not represent a commitment on the part of Zend Technologies Inc. No part of this

manual may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or information

storage and retrieval systems, for any purpose other than in accordance with the

Zend Core for i5/OS End User License Agreement (EULA).

© 1999-2007 Zend Technologies Inc. All rights reserved.

Zend Core for i5/OS User Guide issued November 2007.

Product Version: 2.5

DN: ZCI5OS-UG-271107-2.5-006

In This Guide

This guide is intended for System Administrators and PHP developers who

manage the PHP Web Servers in their organization. This guide covers the

functional aspects of Zend Core for i5/OS along with in-depth explanations on

how to get support and other services from Zend Technologies.

Throughout this guide are instructions for guiding the reader to extra reference

information about various products featured or implemented in Zend Core for

i5/OS.

Zend Core Iseries User Guide

iv

Table of Contents

Introduction ...5
Installing Zend Core ..6
Updating Zend Core...7
Zend Core Setup Tool ..9
Getting Started ...19
Zend Navigator Demo Application ..21
Functional Overview ..23
Zend Core and Zend Framework..24
User Interface...26

Control Center ...27
Configuration ...35
Documentation...53

i5 PHP API Toolkit..56
i5 PHP API Toolkit ...56
i5 Toolkit Classes (sample) .. 56
i5 PHP Connector API ..57
PHP Data Description .. 93
Easycom PHP Data Description ... 98
Program Samples ... 102

Technical Support.. 125
Additional Zend Products and Services ... 126
Appendixes .. 129

Appendix A - Support Tool Information .. 129
Appendix B - PHP Configuration Information... 130
Appendix C - Zend Core Extensions... 145
Appendix D - Libraries... 154
Appendix E - Misc. Directives Configuration Information 157
Appendix F - I5 Toolkit Templates ... 163

Index ... 167

5

Introduction

Zend Core™ supports businesses using PHP and managing database information

for mission critical web applications. It provides a seamless out-of-the-box

experience delivering a stable, easy to-install and supported PHP development

and production environment.

Presented in a browser-based environment, Zend Core provides a highly stable

and efficient means for installing and managing PHP servers. Resources and

reference information are bundled into Zend Core for “one click” access to a wide

range of information, configurations and reference documents.

Using Zend Core ensures that organizations work with a stable, certified, binary

distribution of PHP. In other words, Zend Core provides a constantly supported

and updated generic code base. An organization’s PHP will therefore be easily

understood so that newcomers or external consultants can quickly get up to

speed with the new environment.

Zend Core for i5/OS User Guide

6

Installing Zend Core

To install Zend Core for i5/OS in 'silent' mode (no interactive

dialogs):

When the SAVF is loaded into the i5 QGPL library run the following

command:

SBMJOB CMD(RSTLICPGM LICPGM(1ZCORE5) DEV(*SAVF)

SAVF(QGPL/ZCORESAVF))

Zend Core for i5/OS will be automatically installed without interactive dialogs

being displayed.

To install Zend Core for i5/OS in 'interatctive' mode:

1. When the SAVF is loaded into the i5 QGPL library, run the following

command:

RSTLICPGM LICPGM(1ZCORE5) DEV(*SAVF) SAVF(QGPL/ZCORESAVF

2. Follow the on-screen instructions.

Refer to the Zend Core for i5/OS Installation Guide for complete installation

instructions. This is located in the Zend Core for i5/OS Installation Package or can

be downloaded from the Zend Core Resources page, located at

http://www.zend.com/en/products/core/for-i5os.

Updating Zend Core

7

Updating Zend Core

Users who have purchased a Zend Core Support Subscription (Silver, Gold or

Platinum) can get periodic Zend Core Updates, including bug and security fixes.

By downloading Zend Core for i5/OS, you have received a one year, first-level

Silver Support Subscription.

For more on Zend Support Subscriptions, and to register for other programs, see

the Zend Core Support page at http://www.zend.com/en/products/core/support.

You can download and install one or more Updates using the Zend Core Setup

Tool.

This method is only applicable for systems with a direct internet connection.

Note:

Updates and Zend Update Packages are only available to Zend Core Support

Subscribers. You must therefore ensure that your correct Zend Core Support

Network User ID and Password (or Zend account login details) are configured in

your Zend Core. To configure these settings, open the Zend Core Setup Tool and

select Update via Zend Network Menu | Change Network ID user/password.

This procedure describes how to download and install Updates using the Zend

Core Setup Tool.

To download and install Updates using the Zend Core Setup Tool:

1. Open the Zend Core Setup Tool by running the command "go

zendcore/zcmenu" in your i5/OS emulation screen.

2. Select Update via Zend Network Menu | Update Zend Core

components | Zend Network Update.

3. A list of available Updates will be displayed.

4. To install all available Updates, press F10.

To install only certain Updates, select the required components and

press F8.

The Updates will be downloaded and installed.

Note:
It is recommended to test the Updates on a test environment before applying

them to a production environment.

Zend Core for i5/OS User Guide

8

Consistency Checking

The Zend Core Setup Tool performs consistency checks to prevent you from

installing Updates which are dependent on other, uninstalled Updates.

However, if necessary you can force the download of these Updates through the

Zend Core Setup Tool. (Not recommended.)

Rollbacks (Removing previous Updates)

Update transactions are preserved so that Updates can be removed and the

system can be 'rolled back' to a previous state. This action is referred to as a

Rollback. Rollbacks are stored and displayed with the date and time that your

system was modified and Updates installed. Selecting a Rollback will revert your

system back to the state it was in on the selected time/date.

Rollbacks can be performed through the Zend Core Setup Tool.

This procedure describes how to execute a Rollback to a specific recent system

state, using the Zend Core Setup Tool.

To execute an attended Rollback:

1. Open the Zend Core Setup Tool by running the command "go

zendcore/zcmenu" in your i5/OS emulation screen.

2. Select Update via Zend Network Menu | Rollback Options | Rollback

Components.

A list of previous system states will be displayed, listed according to

the date and time that new Updates were installed.

3. Select a required system state and click OK.

Any Updates installed since this version will be deleted.

Note:

Rollback information is stored so that your system can be restored to a previous

state.

Two parameters have been defined to ensure that the rollback feature consumes

the least disk space possible:

1. Maximal disk space allocated for backups (Default maximum disk space

consumption = 100Mbytes).

2. Only the last ten update transactions will be stored, provided they do not

exceed 100Mbytes.

In addition, you can choose to delete Rollback information (see below).

Zend Core Setup Tool

9

To delete Rollback information:

1. Open the Zend Core Setup Tool by running the command "go

zendcore/zcmenu" in your i5/OS emulation screen.

2. Select Update via Zend Network Menu | Rollback Options | Delete

Rollback Information.

A list of available Rollbacks will be displayed.

3. Select a Rollback and click OK.

System state information contained in the Rollback will be deleted.

Zend Core Setup Tool

The Zend Core for i5/OS Setup Tool allows you to configure all aspects of your

Zend Core system, and lets you download and install Updates and additional

components.

The Zend Core for IBM i5/OS Setup Tool can be opened by logging into your

emulation screen and running the following command:

go zendcore/zcmenu

The Zend Core Setup Tool has 6 main options:

 ZCMENU Zend Core for IBM i5/OS Setup Tool

 System: I5RND5R3

Select one of the following:

1. Set Zend Core Web Administration Console password

2. Update via Zend Network menu

3. Run Support Tool

5. Service Management menu

6. MySQL Management menu

7. System Information and Server IDs

90. Signoff

Selection or command

===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

 F23=WRKUSRJOB

Figure 1 - Zend Core Setup Tool

Zend Core for i5/OS User Guide

10

1. Set the Zend Core Web Administration Console Password - Provide a

password for accessing the Zend Core Web Administration GUI.

2. Update via Zend Network menu - The Zend Core for i5/OS update

mechanism is used to upgrade installations. The Zend Network update

mechanism enables automatic downloads and installation of Updates.

3. Run Support Tool - The Zend Support Tool is a tool for gathering

information about user configurations and setup. This tool allows the Zend

Support Team to solve problems in a more comprehensive and efficient

way.

5. Service Management - Manages all required services, e.g., Zend Core

Subsystem and Apache Control.

6. MySQL Management Menu - Allows you to control your MySQL processes

and services.

7. System Information and Server IDs - Displays i5/OS System information.

Option 1 - Set the Zend Core Web Administration Console

Password

Allows you to change your password for accessing the Zend Core Administration

Web GUI.

Zend Core for i5/OS Setup Tool

The Zend Core Web Administration Console

is password protected (case sensitive).

Please enter password:

F3=Exit Enter=Continue

Figure 2 - Zend Core Web Administrative Console Password Screen

Enter a new password and press Enter.

You must restart your web server after changing your password.

Zend Core Setup Tool

11

Option 2 - Update via Zend Network

Note:

You must be registered for a Zend Support Subscription (Silver, Gold or Platinum)

in order to have access to Updates.

By downloading Zend Core for i5/OS, you have received a one year, first-level

Silver Support Subscription.

For more on Zend Support Subscriptions, and to register for other programs, see

the Zend Core Support page at http://www.zend.com/en/products/core/support.

 ZCUMENU Zend Core for IBM i5/OS Setup Tool

 System: I5RND5R3

Select one of the following:

1. Change Network ID user/password

2. Add Updater daily scheduled job

3. Work with Updater scheduled jobs

4. Remove all Updater scheduled jobs

5. Update Zend Core components

6. Remove Zend Core components

7. Rollback options

Selection or command

===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

 F23=WRKUSRJOB

Figure 3 - Zend Core Setup Tool - Update via Zend Network

The Update via Zend Network menu includes the following options:

1. Change Network ID user/password - Allows you to specify/edit your

Zend Core Support Network User ID and Password. You can also use your

Zend account login details.

You must enter a Zend Core Support Network User ID and Password in order

to be able to find and install Updates.

Zend Core for i5/OS User Guide

12

2. Add Updater daily scheduled jobs:

 Enter the time to check for daily updates (or accept the 01:00 AM

default) and click Enter.

 Select one of the following options for the Updater to perform at

the specified time:

• List available Updates - Creates a file in your temp directory containing

all available Updates.

• Get available Updates - Downloads and installs all available Updates.

3. Work with Updater scheduled jobs - Select the required parameter or job

and select an action by entering the appropriate number option.

 Work with Job Schedule Entries

 I5RND5R3

 10/21/07 15:25:39

Type options, press Enter.

2=Change 3=Hold 4=Remove 5=Display details 6=Release

8=Work with last submission 10=Submit immediately

 Next

-----Schedule------ Recovery Submit

Opt Job Status Date Time Frequency Action Date

ZC_UPD_LST SCD *ALL 01:00:00 *WEEKLY *SBMRLS

 10/22/07

 Bottom

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh F6=Add F9=Retrieve

F11=Display job queue data F12=Cancel F17=Top

 F18=Bottom

Figure 4 - Work with Updater Scheduled Jobs

The options are:

2. Change

3. Hold

4. Remove

5. Display details

6. Release

8. Work with last submission

9. Submit immediately.

Zend Core Setup Tool

13

4. Remove all Updater Scheduled Jobs - Automatically removes scheduled

Updating jobs.

5. Update Zend Core Components - Allows you to find and install Updates

from the Zend Network.

Note:

You must be registered for a Zend Support Subscription (Silver, Gold or

Platinum) in order to have access to Updates.

By downloading Zend Core for i5/OS, you have received a one year, first-level

Silver Support Subscription.

For more on Zend Support Subscriptions, and to register for other programs,

see the Zend Core Support page at

http://www.zend.com/en/products/core/support.

ZCUMENU1 Zend Core for IBM i5/OS Setup Tool

 System: I5QA1

 Select one of the following:

 1. Zend Network Update

 2. Install Zend Update Packages

 Selection or command

 ===>

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel

 F23=WRKUSRJOB

Figure 5 - Update Zend Core Components menu

• Select Option 1 - Zend Network Update - to view and install available

Updates.

Note:
You must have configured your Zend Network User ID and Password in

Zend Core during the installation process or using the Setup Tool (see the

'Change Network ID user/password' option, above) to be able to download

Updates.

http://www.zend.com/en/products/core/support

Zend Core for i5/OS User Guide

14

• -Or- Select Option 2 - Install Zend Update Packages - if you have

previously downloaded Zend Update packages from the Zend Network

site.

Zend Update Packages are files containing a set of the latest Updates.

Downloaded Zend Update Packages must be placed in the folder

/usr/local/zend/core/setup/dl before they can be installed using the

Setup Tool.

6. Erase Components - Allows you to delete Zend Core components, including

libraries and extensions. If you have chosen to delete a component which

other installed components are dependent upon, a prompt will appear asking

for confirmation of the components' deletion.

7. Rollback options- Allows you to view and carry out Rollbacks, or to delete

Rollback information. Rollbacks will delete Updates and revert your Zend Core

back to a previous state.

For more information, see the 'Rollbacks' section under the 'Updating Zend

Core' chapter.

Option 3 - Run Support Tool

The Zend Support Tool is a tool for gathering information about your system

configuration and setup. This tool allows the Zend Support Team to solve

problems in a more comprehensive and efficient way.

To create a file containing the above system information which can be sent to the

Zend Support Team, specify the destination directory where the file will be

created.

After the file is created it can be sent to Zend Support if the need for support

arises.

See Appendix A - Support Tool Information for a complete list of the information

collected by the Support Tool.

Note:
For more on Zend Support, and to subscribe to a Support program, see

http://www.zend.com/en/products/core/support.

Zend Core Setup Tool

15

Option 5 - Service Management

This menu allows you to control your Zend subsystem, Apache web server and

the PHP toolkit service I5_COMD.

ZCAMENU Zend Core for IBM i5/OS Setup Tool

 System: I5RND5R3

Select one of the following:

1. Start Zend Core Subsystem

2. Stop Zend Core Subsystem

4. Start Apache server instances

5. Stop Apache server instances

6. ReStart Apache server instances

7. Additional Apache options

8. Start i5_COMD service

9. End i5_COMD service

Selection or command

===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F23=WRKUSRJOB

Figure 6 - Service Management Menu

The Service Management menu includes the following options:

1. Start Zend Core Subsystem - Starts the Zend Core process

2. Stop Zend Core Subsystem - Stops the Zend Core process

4. Start Apache server instances

5. Stop Apache server instances

6. ReStart Apache server instances

7. Additional Apache options - Allows you to start/stop additional instances in

the IBM HTTP or PASE Apache Servers.

8. Start i5_COMD service

9. Stop i5_COMD service

Zend Core for i5/OS User Guide

16

 ZCAPMENU Zend Core for IBM i5/OS Setup Tool

 System: I5QA1

Select one of the following:

 1. IBM HTTP Server Control

 2. PASE Apache Control

 Selection or command

 ===>

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel F23=WRKUSRJOB

Figure 7 - Additional Apache Options

• Select Option 1 - IBM HTTP Server Control - to control your IBM HTTP

Server instances. In the following screen, enter the Instance Name and

select the action you would like to perform by entering S (start), E

(end) or R (restart) in the 'Action' category.

• Select Option 2 - PASE Apache Control to control your PASE Apache

instances. In the following screen, enter the configuration file name's

location and name and select the action you would like to perform by

entering S (start), E (end) or R (restart) in the 'Action' category.

8. Start i5_COMD service - Allows you to configure your PHP Toolkit Daemon.

 Start i5_COMD Daemon (ZCCSTREACD)

 Type choices, press Enter.

 Library > ZENDCORE Product library ZENDCORE

 i5_COMD Service Port number . . 6078 Character value, *DFT,

*JOBD

 Enable Prestart Jobs *OFF *ON, *OFF, *AUTO

 Restart i5_COMD if running *NO *YES, *NO, *YES, *NO

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Figure 8 - i5_COMD Daemon Options

Zend Core Setup Tool

17

Note:

If you change the i5_COMD Service Port number, the daemon will open on

a different TCP/IP port number. The new port number (i5comm.port entry)

is updated in the /usr/local/Zend/Core/etc/php.ini file.

9. End i5_COMD service - Stops the PHP Toolkit Daemon.

Note:
To apply changes, stop and start the Zend Core subsystem by selecting Options 2

(start) and 1 (stop) on the System Management Menu.

Option 6 - MySQL Management menu

 ZCMYSQL Zend MySQL management.

 System: I5QA1

Select one of the following:

1. Start MySQL subsystem

2. Stop MySQL subsystem

4. Start MySQL daemon

5. Stop MySQL daemon

Selection or command

===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F23=WRKUSRJOB

Copyright Zend Technologies LTD (2007)

Figure 9 - MySQL Management Menu

The MySQL Management menu includes the following options:

1. Start MySQL subsystem - Starts the MySQL process

2. Stop MySQL subsystem - Stops the MySQL process

3. Start MySQL daemon - Starts the MySQL service. The MySQL Daemon allows

access to the MySQL database.

4. Stop MySQL daemon - Stops the MySQL service.

Note:

If MySQL is not installed, selecting the MySQL Management menu option will

prompt you to install MySQL. See the Zend Core for i5/OS Installation Guide for

more on installing MySQL.

Zend Core for i5/OS User Guide

18

Option 7 - System Information and Server IDs

Displays System Information.

 System Information Date:3/19/07

 ------------------ Time: 12:57:10

 User: QA1

i5/OS version.............: V5R4M0

System Name.............: I5QA2

Serial Number.............: 10BE27C

Model.......................: 825

Processor Group.........: P30

 Server IDs

I:85VR2-WXL3V-CXRH8-AQN52 A:ND8N5-BU66X-5932D-9ERHX

C:DCMW7-P4YBD-YUJBQ-V6KSX L:95TJ2-NPYM3-52RGR-FA9YK

F3 - EXIT

 (C) Copyright Zend Technologies, Ltd 2007

Figure 10 - System Information

The following information is displayed:

 i5/OS version

 System Name

 Serial Number

 Model

 Processor Group

 Server IDs

Getting Started

19

Getting Started

General Information

Zend Core Environmental Variables

The following items are Zend Core Environmental Variables:

Item Explanation

SBS Subsystem

JOBQ Job Queue

JOBD Job Description

CLASS Responsible for process attribute time slots from the

CPU.

Zend Core Subsystem

Zend Core auto startup jobs such as PRNGD and APACHE are grouped, and run

under the Zend Core subsystem.

Logging In

Once the installation process has completed, you will be ready to login to your

Zend Core Administration Web GUI.

To access the Zend Core Administration Web GUI :

1. Enter your i5/OS machine's IP, and port number 89 as follows:

http://IP_address:89

The Zend Core for i5/OS Welcome Screen will appear.

Figure 11 - i5 Welcome Screen

Zend Core for i5/OS User Guide

20

2. Click the 'Zend Core administrative interface' link.

The Zend Core for i5/OS login screen will appear.

Figure 12 - Zend Core Login Screen

3. To login, type the password you defined in the installation process and click

the arrows .

4. Your Zend Core Administration Web GUI will open.

Note:
If you installed Zend Core for i5/OS in silent mode, the default password will be

"zend".

Zend Navigator Demo Application

21

Changing your Zend Core GUI Password

Your Zend Core login password can be changed from the Zend Core Setup Tool in

case it is misplaced or needs to be changed.

 To change your password:

1. Open the Zend Core Setup Tool by running the following command in

your i5/OS emulation screen:

GO ZENDCORE/ZCMENU

2. Select Option 1 - Set Zend Core Web Administration Console password.

 Zend Core for i5/OS Setup Tool

 The Zend Core Web Administration Console

 is password protected (case sensitive).

 Please enter password:

 F3=Exit Enter=Continue

Change Password - Zend Core Setup Tool

3. Follow the instructions and confirm your selection.

4. You must restart your web server for the settings to take effect.

To restart your server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

Zend Navigator Demo Application

This Zend Navigator Demo Application shows the usage of i5 Toolkit functions.

Figure 13 - Zend Navigator login screen

Zend Core for i5/OS User Guide

22

The Zend Navigator demo application can be found in the following directory:

/www/zendcore/htdocs/Zend_Navigator_Demo

 The demo application has the following options:

 Logon - This option allows you to logon to System i with a valid System i

user profile

 Active Jobs - This option allows you to view all active jobs. You can use

the "Load Subsystem" filter to view jobs in selected subsystems. Clicking

on a job line will display some job details and job log.

 Spooled Files - This option allows you to view current user spooled files.

You can use the 'Load User' user filter to display other users' spooled files.

Clicking in a spooled file line will display the spooled file content. Some

spooled file details and spooled file options such as DELETE,

HOLD/RELEASE or display spooled file content, will be displayed in PDF

format.

 System Value - This option displays a full list of all System i System

values.

 User Profiles - This option allows you to view all user profiles on your

server. Clicking on a user profile line will display some user details and

user status options, and will allow you to enable or disable selected user

profile statuses.

 Database files - This option allows you to view all database files on your

server. Selecting a library from the drop-down list and clicking a file will

display all data in the file. Click the 'File Description' button in the file

display to see more information on the file.

To run the demo application, go to: http://<Your

i5_TCP_address>:<port_number>/Zend_Navigator_Demo/login.php

Functional Overview

23

Functional Overview

Zend Core provides a “single point of access” for configuration, documentation,

support, monitoring and control of your PHP and Web Server as follows:

 PHP Configuration - Configure and view existing PHP configurations and

changes in a phpinfo display.

 Reference Information - Search reference information included in Zend

Core to get immediate answers to questions. Zend Core provides

advanced search functionality by searching across all included reference

information at once.

 Server Monitoring and Control - View the overall condition of the

server.

 Extension Configuration - Control the extensions loaded in your

environment.

 Benchmarking - Measure performance standards to make your

applications more efficient.

Zend Core for i5/OS User Guide

24

Zend Core and Zend Framework

Zend Framework is a high quality open source framework for developing Web

Applications and Web Services with PHP.

The Zend Framework is a collection of common PHP classes which sits above the

PHP layer. It packages classes and code, used for common functions such as

connecting to databases and creating PDF's, into one easy-to-use application.

Using the Zend Framework negates the need for developers to rewrite already

existing code, and so significantly speeds up the development process as well as

providing the stability ensured by the use of proven code patterns.

While Zend Framework provides an almost ready to use application, it also grants

complete flexibility, allowing developers to adapt the application to their own

needs.

The expertise of the qualified PHP developers who have worked on the project

have ensured a high-quality, stable tool. Zend Framework is covered by unit

tests, automatic self-testing mechanisms which ensure that the Framework is

constantly tested and monitored.

In addition, Zend Framework has a clean IP. All contributors to the project have

signed a contributor license attesting that their contributions have not been

previously copyrighted, thus ensuring peace of mind for developers and allowing

free use of all content within the Framework.

For more on Zend Framework, visit the Zend Framework Homepage at

http://framework.zend.com.

Installation

The Zend Framework comes bundled with Zend Core for i5/OS and will be

automatically installed during installation.

Updating

As Zend Framework is an open source project, new updates are constantly being

added.

For the latest Zend Framework news and updates, make sure you are added to

Zend Framework's mailing list:

http://framework.zend.com/wiki/display/ZFDEV/Contributing+to+Zend+Framewo

rk#ContributingtoZendFramework-Subscribetotheappropriatemailinglists

Alternately, visit the Zend Framework portal in order to see the latest Zend

Framework news: http://framework.zend.com

Zend Core and Zend Framework

25

Note

During the Zend Core installation, the Zend Framework library will be placed in a

folder entitled "ZendFramework".

By default, this can be found in:/usr/local/Zend/ZendFramework

Loading Zend Framework classes

Once Zend Framework's library has been added to your include path, there are

two ways to load Zend Framework's classes in your script:

1. Using the Zend Loader:

The Zend Loader utility class checks whether the class already exists within the

script. If it does, it will create the relevant file from the class name using Zend

Framework's naming convention (See

http://framework.zend.com/manual/en/coding-standard.naming-

conventions.html for more information on Zend Framework's naming

conventions). If the class already exists, this will speed up performance.

Using the Zend Loader also has the added advantage of loading classes outside of

Zend Framework.

To use the Zend Loader:

1. Load the Zend Loader utility class once in your script:

Require_once 'Zend/Loader.php';

2. From now, load each class using the class name:

Zend_Loader::loadClass('Zend_Class_Name');

For example, in order to load the Zend Http Client:

Zend_Loader:: loadClass('Zend_Http_Client);

2. Using require / include calls

Classes can also be called using the conventional require or include calls:

To use 'require class':

1. Enter a 'require' command for the relevant file into your script:

Require 'File.php';

For example, to require the Zend Http Client Class:

require 'Zend/Http/client.php';

Zend Core for i5/OS User Guide

26

In order to see a full list of Zend Framework's components, including more

information on the functionality and use of the various components, see

http://framework.zend.com/manual

User Interface

The Zend Core Web Administration GUI is a tab-based environment for navigating

through the Main Menus. Each of the Main Menus include tabbed sub-menus that

change according to the active tab.

The Main Menus and Menu Options include the following:

Main Menu Menu Options

Control Center System Overview

phpinfo

Benchmark

Support

Updates

Configuration PHP

Extensions

Zend Products

Misc. Directives

Zend Studio Server

Documentation PHP Manual

Note:

Each one of the above-mentioned options is described in detail in their own

dedicated section in the Zend Core for i5 User Guide.

User Interface

27

Control Center
The Control Center is the main system-profiling component for monitoring,

testing and configuring server performance and activity. The tab's functionality

provides System Administrators with an overall display, essential information,

and URL testing capabilities.

The tabs included under the Control Center are:

 System Overview - Displays information about the server’s environment

and activities.

 phpinfo - Displays information about the current state of PHP.

 Benchmark - A performance standard for measuring Web Server

performance and durability.

 Support - Instant access to Online Resources.

 Updates - View all available Updates.

System Overview

The System Overview tab is a server-monitoring screen that provides valuable

information regarding the server's environment and activities. This screen collects

information for immediate display that would otherwise require the time

consuming task of searching for these details.

Figure 14 - Control Center Tab – System Overview

Zend Core for i5/OS User Guide

28

The System Overview Screen displays the following information:

PHP

Displays information about the PHP version installed on the server. The

information includes which Server API the PHP uses and the location of the PHP

configuration file on the server.

Web Server

Displays the Web Server’s name and details about the Operating System’s

environment.

Server Configuration

Displays the Web Server’s port number, root directory and connection time-out

durations, along with the location of the Server Configuration file.

Server Status

Displays an accumulated list detailing the various activities on the server.

Disk Space

Displays the amount of free disk space available, displayed through bar charts of

the partitions and free disk space that give an easy view of the server’s disk

space status.

Web Server Processes and Threads

This bar graph display shows a snapshot of the various threads that are running

on the server.

Note:
The System Overview screen information can be refreshed using the Refresh

button situated in the top-right corner of the screen.

User Interface

29

PHPinfo

The PHPinfo screen is a read-only screen that outputs a large amount of

information about the current state of PHP. It is an easily accessible

representation of information contained in the php.ini file, including information

about PHP compilation options and extensions, the PHP version, server

information and environment, PHP environment, OS version information, paths,

master and local values of configuration options, HTTP headers and the PHP

License.

Figure 15 - Control Center Tab – phpInfo (p.1)

Zend Core for i5/OS User Guide

30

Changing phpInfo

Zend Core's GUI allows easy changing of PHPinfo through the Configuration tab.

Any changes made to the extensions and directives in this tab will be

automatically updated in your php.ini file and will be reflected in the PHPinfo tab.

Note:

Configuration changes will only take effect once the server has been restarted.

More information about the PHPinfo display can be found in the PHP Manual,

accessed by going to the Documentation Tab | PHP and clicking on "PHP Options

and Information", Chapter VI., section LV.

Benchmark

Benchmarking is part of the Zend Core environment for building and deploying

Web applications. Benchmarks are performance standards for measuring Web

Server performance and durability while providing a means for analyzing Web

Page performance.

Figure 16 - Control Center Tab – Benchmark

To run a benchmark test on a URL:

1. Specify the complete URL to be tested, including port number.

2. Choose the amount of requests to perform

-Or- specify the duration (in secs) for which the test will run.

3. Specify the amount of concurrent connections to be simulated in the

test.

User Interface

31

The limit is 64 concurrent connections, in order to prevent overloading

the system.

4. The "Use Keep Alive" option pertains to Web sites that support the

HTTP Keep Alive option. Selecting this option keeps the connection

open while running the test. This is as opposed to opening and closing

connections for every request.

5. Add header lines to the request if necessary.

6. Add a cookie by implementing the following steps:

i.Add the name of the cookie and its value and press Add Cookie.

ii.The list will expand for adding additional Cookies to the list.

iii.Press Delete Cookie to remove a Cookie from the test.

7. To run the Benchmark test, click .

Test results are displayed next to the test parameters as follows:

Figure 17 - Benchmark Result Screen

 Time Taken for Tests - The duration of the test.

 Complete Requests - The number of tests performed.

 Requests Per Second - Sum of completed tests divided by the time

taken for each request.

 Failed Requests - The number of failed tests out of the sum of complete

requests.

 Non-2xx Responses - The amount of tests that did not get a response

containing 2xx from the server (this is a failure indication).

 Mean Time per Request - Average time per request.

 Mean Time per Request (across all concurrent connections) - Average

time per request for all connections.

Zend Core for i5/OS User Guide

32

 Transfer Rate - Calculated as the sum of Bytes transferred divided by the

time it took to transfer the Bytes.

 Total Transferred - The total quantity of Bytes transferred during the

test.

 HTML Transferred - The amount of HTML code transferred (taken from

the Total Transferred).

Support

The Support screen provides instant access to Online Resources. From here,

users can get support, provide product feedback and benefit from the PHP

community’s knowledge and support.

Figure 18 - Support Tab

This screen includes links to:

 Zend Support and Knowledge base - Provides access to the Zend Core

Support Subscription page, through which you can register for a Zend

Core Support Subscription in order to have access to the latest security

Updates.

By downloading Zend Core for i5/OS, you have received a one year, first-

level Silver Support Subscription.

 Product feedback - Allows you to e-mail the Zend team with your

comments and suggestions.

 Zend Developer Zone - Gives access to the latest PHP information from

the Zend Developer Zone.

This can be accessed from http://www.zend.com/en/developers.php.

User Interface

33

Updates

The Updates screen provides a view of available Updates based on your Zend

Network registration information.

A color-coded legend indicates the status of each Update. (This will only be

available if you have configured your Zend Network login details. See below.)

Figure 19 - Control Center Tab – Updates

To refresh the view and check for more Updates from the Zend Network, click the

"Check Updates" button , located in the top-right corner of the

page.

If Updates are available, a message will be displayed at the top of the screen

saying 'Update Zend Core.'

Available Updates can be downloaded and installed automatically using the Zend

Core Setup.

See the 'Updating Zend Core' chapter for more on how to install Updates.

Zend Core for i5/OS User Guide

34

Note:

You must have purchased a Zend Support Subscription (Silver, Gold or Platinum)

in order to have access to Updates.

By downloading Zend Core for i5/OS, you have received a one year, first-level

Silver Support Subscription.

If your Zend Core Support Subscription User ID and Password have not been

configured in Zend Core, you will receive an error message.

For more on Zend Support Subscriptions, and to register, see the Zend Core

Support page at http://www.zend.com/en/products/core/support.

To configure your Zend Core (Network) Support Subscription User

ID and Password:

1. Open the Zend Core Setup Tool by running the "go zendcore/zcmenu"

command in your i5/OS emulation screen.

2. Select Option 2 - Update via Zend Network menu and then Option 1 -

Change Network ID user/password.

3. Enter your Zend Network User ID and Password and press Enter.

4. Restart the web server in order for your changes to take effect.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

User Interface

35

Configuration
The Zend Core configuration section includes the following tabs:

 PHP - Easily customize your php.ini values.

 Extensions - Control the extensions loaded in your environment.

 Zend Products - Configure the Zend products included with the Zend Core

package.

 Misc. Directives - Configure directives that are not part of Zend Core.

 Zend Debugger - Enable PHP code debugging and profiling sessions using

the integration between the Zend Debugger and Zend Core.

PHP

The PHP screen is the configuration tool for viewing and customizing the PHP

values in the php.ini file.

Figure 20 - Configuration Tab PHP Configuration

Configuration options are separated by type in expandable lists. The [+] and [-]

signs indicate if there are more options related to that list item.

Clicking on the Plus Icon [+] will expand the list to expose the different options

and, where applicable, input fields are added to change an option's value.

When applicable, click the Help icon to get more information about the

directive.

Zend Core for i5/OS User Guide

36

Note:
The search directives box at the top of the screen allows you to search all the

Configuration tabs for a required directive. The result will be displayed in the

relevant Configuration tab. If there is more than one result, relevant results will

be presented in a drop-down list to the right of the Search directives box.

Selecting a directive from the drop-down list will take you to the relevant tab.

To configure a PHP directive:

1. Expand the list or use the search directive box to find the relevant

directive.

2. Configure the directive as required.

You can configure multiple directives before saving.

3. Click the Save Settings button at the top-right corner

of the screen to save all the changes made or use the Discard

Changes button to undo all the changes made since

the last save.

4. To apply the changes restart the server.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

Changes will be updated in the PHP Configuration screen and will also be made in

the php.ini file.

For a full list of available PHP configuration options, see Appendix B - Additional

PHP Configuration Information

User Interface

37

Extensions

The Zend Core Extensions screen provides a convenient way to view and

configure extensions.

Figure 21 - Configuration Tab Extension Configuration

System Administrators may prefer to control the extensions loaded in their

environment to make sure that only necessary extensions are loaded.

A PHP extension is a set of instructions that adds functionality to PHP. Extensions

can also be employed to recycle frequently used code. You can place a set of

functions into one extension and instruct your projects to utilize the extension.

Another use for PHP extensions is to improve efficiency and/or speed. Some

processor intensive functions can be better coded as an extension rather than

straight PHP code.

Note:
The purpose of the load/unload extension option is to configure php.ini according

to the extensions you would like loaded.

The Extensions screen is a configurable list of extensions built in with the Zend

Core installation or extensions added to php.ini by the user. It allows you to view

the status of all your extensions and enables you to quickly and easily load and

unload extensions.

Zend Core for i5/OS User Guide

38

In addition, you can also configure directives associated with certain extensions.

Extensions with configurable directives will have a Plus Icon [+] next to them.

Click the Plus Icon [+] to expose a list of the different configurable directives

associated with a particular extension.

When applicable, click the Reference Icon to the right of an extension to

display information about the extension in the PHP manual.

When applicable, click the Help icon to view information about a particular

directive.

Note:
The search directives box at the top of the screen allows you to search all the

Configuration tabs for a required directive. The result will be displayed in the

relevant Configuration tab. If there is more than one result, relevant results will

be presented in a drop-down list to the right of the Search directives box.

Selecting a directive from the drop-down list will take you to the relevant tab.

Extension Status

Extensions can have one of three different statuses:

 Unloaded - The extension is not running on the machine.

 Loaded - The extension is running on the machine.

 Built In - Built-in extensions are extensions that have dependencies, or

were complied with PHP. Built in extensions cannot be removed and so do

not have an enable/disable icon next to them.

Hovering over the lightbulb icon will display a tooltip indicating whether the status

is unloaded, loaded or built in.

Note:

Extensions marked with an '!' indicate that an inconsistency occurred between the

server state and the php.ini state. Possible causes are that the php.ini was

changed earlier and the server was not restarted, or that the extension failed to

load. To test this, try to restart the server.

Extensions and directives marked '*' have different values (or loaded/unloaded

states in case of Extensions) in the php.ini file and in the running server instance.

To synchronize their state/value, restart the Web Server.

User Interface

39

To change an extension's status:

1. Click the Enable or Disable Extension Switch next to the required

extension.

Built-in extensions cannot be disabled and so will not have an

Extension Switch displayed.

A notice will appear to restart the server.

2. Click the Save Settings button at the top right-corner

of the screen to save the changes or click the Discard Changes

 button to undo all changes made

3. To apply the changes restart the server.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

Changes will be updated in the Extension Configuration screen and will also be

made in the php.ini file.

To configure a directive associated with an extension:

1. Expand the list or use the search directive box to find the relevant

directive.

2. Configure the directive as required.

You can configure multiple directives before saving.

3. Click the Save Settings button at the top right corner

of the screen to save all the changes made or use the Discard

Changes button to undo all the changes made since

the last save.

4. To apply the changes restart the server.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

Changes will be updated in the Extension Configuration screen and will also be

made in the php.ini file.

Note:

Directives of both loaded and unloaded extensions can be configured through the

Extension configuration screen.

Zend Core for i5/OS User Guide

40

For a full list of extensions and their descriptions, see Appendix C - Zend

Core Extensions.

Note:
Some extensions have dependencies on certain libraries.

For a full list of libraries installed with Zend Core, see Appendix D - Libraries.

System i users should only download extensions compiled in AIX (up to version

5.2).

To Add Zend Extensions:

1. Download the extension.

2. Place the extension in your extensions directory.

To locate the extensions directory, open your php.ini and check the

value for the directive extension_dir=.

By default, your extensions directory will be located in:

/usr/local/Zend/Core/lib/php/20060613

3. Add the following line to your php.ini:

zend_extension_manager.<my_extension_name>=

<full_path_to_extension_location>/<my_extension_name>

4. Ensure that you have replaced <full_path_to_extension_location>

with the path to your extension's location and <my_extension_name>

with your extension's name.

5. Restart your web server.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

6. Ensure that the extension is properly loaded by checking the output of

PHPInfo by going to the Control Center | PHPinfo tab in Zend Core.

Note:

If you try to load a PHP extension as a Zend extension you will receive the

following error message in your server's error log: "<extension_name> doesn't

appear to be a valid Zend extension."

In this case, remove it and add it as a PHP extension following the instructions

under "To Add PHP Extensions", below.

User Interface

41

To Add PHP Extensions

1. Download the third party extension. Many third party extensions can

be found through at http://pecl.php.net.

Extensions are obtained directly from external web repositories.

2. Place the PHP extension in your extensions directory.

To locate the extensions directory, open your php.ini and check the

value for the directive extension_dir=.

By default, your extensions directory will be located in:

/usr/local/Zend/Core/lib/php/20060613

3. Add the following line to your php.ini:

 extension=<my_extension_name>.so

Ensure that you replace <my_extension_name> with your extension's

name.

4. Restart your web server.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

5. Ensure that the extension is properly loaded by checking the output of

PHPInfo by going to the Control Center | PHPinfo tab in Zend Core.

Compiling extensions

You can also create and compile your own extensions using the phpize command.

Disclaimer:

External extensions are not supported by Zend. If you encounter a problem,

remove any additional extensions before contacting Zend Support.

Building PHP extensions from source requires basic UNIX skills as well as several

build tools, among others:

 An ANSI C compiler

 flex: Version 2.5.4

 bison: Version 1.28 (recommended), 1.35, or 1.75

 Any specific components or libraries required by the extension being built

(such as gd, pdf libs, etc.)

Zend Core for i5/OS User Guide

42

To compile extensions from source:

1. Download and extract the extension's source.

2. Change into the extension source directory, (by default located in

/usr/local/Zend/Core/lib/phpext) and run the following commands:

cd <your_extension_directory>

/usr/local/Zend/Core/bin/phpize

Ensure that you replace <your_extension_directory> with your

extension directory's name.

3. Run the ./configure command to prepare the source for compilation.

You will need to include the "php-config" and "enable-shared" flags as

follows:

./configure --with-php-config=/usr/local/Zend/Core/bin/php-

config\

 --enable-shared

Note:
Some extensions will need additional configuration flags. It is therefore

advised to run "./configure --help" and review the possible flags before

compiling.

4. Compile and install the extension binaries by running the following

commands:

make

make install

Make install should install the new .so extension binary in Zend Core's

extension directory.

5. Add the following line to your php.ini to load your new extension:

extension=<my_extension_name>.so

Replace <my_extension_name> with your extension's binary name.

6. Restart your web server.

7. Ensure that the extension is properly loaded by checking the output of

PHPInfo. This can be viewed in the Control Center | PHPinfo tab in

Zend Core.

The extension will now appear in your Zend Core Web Administration GUI under

the Extensions tab and you will be able to use Zend Core Web GUI to load and

unload the extension.

User Interface

43

Zend Products

The Zend Products tab allows you to view and configure the Zend products

included with the Zend Core package.

Through this tab you can view the status (loaded/unloaded) of your Zend Core

products, and configure certain directives associated with them.

Zend products are listed by type in expandable lists. Clicking on the Plus Icon

[+], where applicable, will expand the list to expose the configurable directives

associated with a Zend Product. Relevant input fields are added to change a

directive's value.

Note:

The search directives box at the top of the screen allows you to search all the

Configuration tabs for a required directive. The result will be displayed in the

relevant Configuration tab. If there is more than one result, relevant results will

be presented in a drop-down list to the right of the Search directives box.

Selecting a directive from the drop-down list will take you to the relevant tab.

Through this screen, users can configure the following Zend products:

 Zend Core

 Zend Debugger

 Zend Extension Manager

 Zend Optimizer

 Additional Zend Product Directives

Note:

More extensions may be listed if additional Zend Products are installed on the

machine.

Zend Core for i5/OS User Guide

44

Figure 22 - Configuration Tab - Installed Zend Products List

Zend Core

zend_core.allow_restart Enables restarting the server from the

Zend Core restart button.

This option is disabled under on Zend Core

for i5/OS.

zend_core.default_gui_language Determines the user interface language

(supported languages will vary according to

product version).

Zend Debugger

The Zend Debugger is the client extension for debugging PHP with Zend Studio

IDE. This extension provides the initial framework needed for initiating debug

sessions.

Using the Zend Debugger with Zend Studio IDE provides advanced debugging

features, including Conditional Breakpoints, Stack Trace View, Advanced Watches,

Variables and Output Buffer.

The Studio Client does not have to be installed on the Web Server and can be

used for debugging with a remote Client over SSL. Remote connections are

secure, ensuring maximum protection for remote debugging with offsite locations

or across the Internet.

For more on debugging using Zend Studio IDE, see the Zend Studio User Guide.

For more information on Zend Studio and to download the product or the User

Guide, go to:

http://www.zend.com/products/zend_studio/i5OS

User Interface

45

Note:

The settings in the Zend Debugger tab are only applicable when the Debugger

extension is loaded.

See the 'Zend Debugger' topic for more information.

The following zend.ini directives define a port range for Tunneling. You can

modify these settings to ensure persistent connections while using Tunneling over

firewalls for debugging event information in Zend Platform or debugging scripts

edited in Zend Studio IDE:

zend_debugger.tunnel_max_port Maximal possible value of Debugger

tunneling port.

Default value: 65535.

zend_debugger.tunnel_min_port Minimal possible value of Debugger

tunneling port.

Default value: 1024.

While Tunneling, the Debugger will try to locate a free port in the range defined in

the max and min Zend Debugger Tunnel Port directives above. Another

consideration when defining a port range is to ensure that the amount of ports

opened correspond to the amount of possible debugger connections that may

occur, i.e. the range should reflect the amount of Zend Studio IDEs that will be

using the Debugger Port.

Note:

The Debugger uses the default values either when the directives are not present

in the Zend ini, or if one of them is invalid. If the directives are not present, the

Debugger will revert to random port allocation and not from a predefined range of

ports.

In parallel, the System Administrator must ensure that proper firewall policies are

set to allow communication via the selected ports.

The tunnel server, and not the debugger, uses these tunnel settings. The

debugger will still use random ports for debugging.

Zend Core for i5/OS User Guide

46

Note:

The following error message might appear in your web server's error log:

"Could not find a free TCP port for tunneling. Please re-adjust the

'zend_debugger.tunnel_min_port' and 'zend_debugger.tunnel_max_port'

directives in the php.ini file."

This means the Debugger could not find a free port to establish a communication

tunnel. Make sure you have defined an adequate port range in the directives. If

the problem persists, consider checking the firewall policies.

For more on configuring debugging settings using Zend Core, see information

under the Zend Debugger tab topic.

Zend Extension Manager

The Zend Extension Manager is in charge of loading the Zend modules according

to their appropriate versions.

Zend Optimizer

Zend Optimizer is a free application that runs the PHP scripts encoded by Zend

Guard for enhancing PHP application running speed.

In addition, Zend Optimizer goes over the intermediate code generated by the

standard Zend run-time compiler and optimizes it for faster execution.

Read more about the Zend Optimizer at

http://www.zend.com/en/products/guard/optimizer.

http://www.zend.com/en/products/guard/optimizer

User Interface

47

Zend Optimizer Directives:

zend_optimizer.disable_licensing You can disable the Zend Optimizer

license request if you do not need to use

any licensing features.

zend_optimizer.enable_loader Adding the zend_optimizer.enable_loader

= 0 directive will slightly improve the

Optimizer's performance as it disables the

transparent auto-loading mechanism that

is built into the Zend Optimizer. Only

disable this directive if you do not plan to

use the Zend Optimizer to load encoded

files.

zend_optimizer.licence_path A license file is required to load encoded

PHP scripts that were encoded with a

require-license option. If you turn off this

option, encoded scripts on your server

that require a license may not load.

zend_optimizer.optimization_level Enable optimizations bitmask.

Zend Product Status

Zend Products can have one of three statuses according to different requirements

and the environment running PHP.

The statuses are as follows:

 Unloaded - The product is not running on the machine.

 Loaded - The product is running on the machine.

 Built In - Built-in products are products that have dependencies, or were

complied with PHP. Built in extensions cannot be removed and so do not

have an enable/disable icon next to them.

Note:
Zend Products cannot be disabled through the Zend Products tab. To disable Zend

Products, go to your php.ini file and comment out the required extension.

Zend Core for i5/OS User Guide

48

To configure a directive associated with a Zend Product:

1. Expand the list or use the search directive box to find the relevant

directive.

2. Configure the directive as required.

You can configure multiple directives before saving.

3. Click the Save Settings button at the top right corner

of the screen to save all the changes made or use the Discard

Changes button to undo all the changes made since

the last save.

4. To apply the changes restart the server.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

Changes will be updated in the Zend Products screen and will also be made in the

php.ini file.

Additional information about Zend Products can be found at

http://www.zend.com/products, or by going to the Additional Zend Products and

Services chapter.

User Interface

49

Misc. Directives

Directives that are not part of Zend Core are listed in the Misc. Directives screen.

This screen allows you to easily view and configure additional commonly used

directives.

Figure 23 - Configuration Tab - Misc.Directives

The available directives are separated by type in expandable lists. Clicking on the

Plus Icon [+] will expand the list to expose the different options and, where

applicable, input fields are added to change a directive's value.

When applicable, click the Help icon to get more information about the

directive.

Note:

The search directives box at the top of the screen allows you to search all the

Configuration tabs for a required directive. The result will be displayed in the

relevant Configuration tab. If there is more than one result, relevant results will

be presented in a drop-down list to the right of the Search directives box.

Selecting a directive from the drop-down list will take you to the relevant tab.

For a full list of Misc. Directives configuration information, see Appendix E - Misc.

Directives Configuration Information.

Zend Core for i5/OS User Guide

50

To configure Misc. directives:

1. Expand the list or use the search directive box to find the relevant

directive.

2. Configure the directive as required.

You can configure multiple directives before saving.

3. Click the Save Settings button at the top right corner

of the screen to save all the changes made or use the Discard

Changes button to undo all the changes made since

the last save.

4. To apply the changes restart the server.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

Changes will be updated in the Misc. Directives screen and will also be made in

the php.ini file.

Zend Debugger

Zend Core comes complete with the option to enable remote PHP debugging and

profiling of Web applications through using the Zend Debugger (Zend Studio

Server) component.

This component enables developers using the Zend IDE to connect to a remote

server in order to analyze (debug and profile) and fix code.

The Zend Debugger tab allows you to configure which hosts should be allowed to

initiate debugging and profiling sessions.

Note:
For the Zend Studio IDE to be able to initiate debugging and profiling sessions,

the IP address of the machine where the Zend Studio IDE is installed must be in

the Allowed Hosts list.

User Interface

51

Figure 24 - Configuration Tab - Zend Debuger

Settings

The Zend Debugger tab displays the settings for the Debugger that resides on the

server.

There are four categories of settings:

1. Allowed Hosts - Lists the hosts allowed to initiate Debugging and

Profiling sessions.

2. Denied Hosts - Lists the hosts that are not allowed to initiate Debugging

and Profiling sessions, even if they are on the Allowed Hosts list.

3. Allowed Hosts for Tunneling - Lists the hosts allowed to use the Zend

Studio Tunnel for debugging across a firewall.

4. Expose Remotely - This setting determines whether the Debug Server

will expose itself to remote clients. This is required if you want the Zend

Studio Browser Toolbar to automatically detect pages that can be

debugged.

Zend Core for i5/OS User Guide

52

To add/remove an Allowed, Denied or Tunneling Host:

1. Click "Add" .

A new unconfigured line will be added to the Host list.

2. Enter the required address and Net Mask.

3. To remove a Host, click the "Remove Host button" next to the

required host.

4. Press Save .

5. To apply the changes restart the server.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

To configure your "Expose Remotely" settings:

1. Choose the required option from the drop-down list:

 Always - Will expose all hosts

 Selective - Only exposes the hosts in the allowed host list

 Never - Will not expose any host

2. Press Save .

To apply the changes restart the server.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

Note:
The settings in the Zend Debugger Tab are only applicable when the Debugger

extension is loaded. See the Zend Products tab for more on the Debugger

extension.

User Interface

53

Documentation
The Documentation tab is the main source for reference information.

Using the Search sub-menu considerably reduces the time it takes to obtain

information as all necessary information is locally available, with no need to

search the internet.

The tabs included under the Documentation tab are:

 PHP - The PHP Manual

 PEAR - The PEAR Manual

 Search - Allows you to search the PHP/PEAR Manuals

PHP

The PHP screen of the Documentation Tab allows easy access to the PHP Manual

for instant access to the most comprehensive PHP reference information.

The PHP Manual consists primarily of function references, but also contains

language references, explanations of some of PHP’s major features, and other

supplemental information.

Figure 25 - PHP Manual Tab

Use the Table of Contents to browse to the required section of the PHP Manual.

Zend Core for i5/OS User Guide

54

Use the browse buttons at the top of the page to go to the next / previous

page, to go up a level or to return to the PHP Manual Homepage .

The Search box at the top of the page allows you to

search the PHP Manual for specific information.

For more advanced search options, see the Search tab.

Note:

For the most up to date php information, refer to the online PHP manual found at

http://php.net.

PEAR

The PEAR screen of the Documentation Tab allows easy access to the PEAR

Manual for instant access to the most comprehensive PEAR reference information.

Figure 26 - PEAR Manual Tab

Use the Table of Contents on the right to browse to the required section of the

PHP Manual.

Use the browse buttons at the top of the page to go to the next / previous

page, to go up a level or to return to the PHP Manual Homepage .

The Search box at the top of the page allows you to

search the PHP Manual for specific information.

For more advanced search options, see the Search tab.

User Interface

55

Search

The Search Documentation tab allows you to search the PHP and PEAR Manuals to

get the most relevant information.

Figure 27 - Search Tab

Enter a string and click the arrow icon to search for it in either the PHP or

PEAR Manuals.

Note:

Unmark the PHP/PEAR checkbox to limit your search to a specific manual.

In addition to the PHP and PEAR Manuals Search functionality, the PHP,

Extensions, Zend Products and Misc. Directives pages under the Configuration tab

also have a 'Search Directives' box which allows you to search all the

Configuration tabs for a required directive. The result will be displayed in the

relevant Configuration tab. If there is more than one result, relevant results will

be presented in a drop-down list to the right of the Search directives box.

Selecting a directive from the drop-down list will take you to the relevant tab.

Zend Core for i5/OS User Guide

56

i5 PHP API Toolkit

i5 PHP API Toolkit
The purpose of the PHP ToolKit is to allow Zend Core for i5/OS to interact with

native i5/OS services.

The PHP APIs enable PHP programs to access System objects such as

RPG/COBOL/Java programs, CL commands, Data Queue, Spooled file, etc. These

APIs expose the PHP Object Oriented programming interface.

From an architectural standpoint, PHP functionality is implemented as a PHP

extension that is enabled during the Zend Core for i5/OS installation.

The extension implements the client side of the interface.

A server, implementing the native i5/OS interface, is installed on the i5/OS

machine as a native i5/OS service.

i5 Toolkit Classes (sample)
i5 Toolkit classes can be found in the directory /www/zendcore/i5Toolkit_library.

This directory contains the i5 Toolkit classes file "Toolkit_classes.php", and the

"demo_for_toolkit_classes.php" sample program, which utilizes the Toolkit

classes.

The i5 Toolkit class library contains the following classes:

 i5_Connection - Connection class

 i5_Description - Data type definition class

 i5_Program - Program call class

 i5_DataQueue - Data Queue class

 i5_DataQueueKey - Keyed Data Queue class

 i5_SpoolList - Spooled file list class

 i5_Userspace_Create - User Space create class

 i5_Userspace_Delete - User Space delete class

 i5_UserspaceManage - User Space read/write class

 i5_DataAreas - Data Area class

 i5_JobLogs - Job log class

 i5_ActiveJobs - Active Jobs class

 i5_ObjectListing - Object list class

 i5_NativeFileAccess - Database class

i5 PHP API Toolkit

57

 INSTALLATION

No special installation is required, just place the i5 Toolkit class file

"Toolkit_classes.php" in the same directory as your PHP program.

Zend Studio IDE templates

Zend Studio IDE for i5 comes complete with code templates containing i5 PHP API

Toolkit functions.

For a full list of these functions, see Appendix F - I5 Toolkit Templates.

i5 PHP Connector API
All API calls start with prefix "i5".

Connection Management

i5_connect

resource i5_connect(string server, string user, string password[, array options]).

 Description: Connects to the AS/400 server.

 Return Values: AS/400 connection resource or false on failure.

 Arguments:

• server - Name of the server to connect to. This can be either a

symbolic name or an IP

• user - Username to use for connecting.

Note: Username QSECOFR cannot be used in this function.

• password - Password for the username

• options - Connection options.

 Example:

$conn = i5_connect("1.2.3.4", "MYUSER", "MYPWD");

if (!$conn) {

 die(i5_errormsg());

}

Zend Core for i5/OS User Guide

58

Connection Options:

• I5_OPTIONS_JOBNAME – job name (machine name by default)

• I5_OPTIONS_SQLNAMING – Enables using dotted (.) or slashed (/)

notation in SQL requests

• I5_OPTIONS_DECIMALPOINT – Enables using dot or comma as decimal

separator

• I5_OPTIONS_CODEPAGEFILE – Enables using specific code page

(CCSID)

• I5_OPTIONS_ALIAS – Enables naming a connection. If the name is

used in another i5_connect, then the another i5_connect will use the

same connection.

• I5_OPTIONS_INITLIBL – Specified libraries are added to the beginning

of the initial library list.

i5_close

bool i5_close([resource connection]).

 Description: Closes connection to AS/400 server.

 Return Values: Boolean success value.

 Arguments:

• connection - Result of i5_connect

i5_adopt_authority

bool i5_adopt_authority(string username, string password, [resource

connection]).

 Description: Changes authority of the connection to a specific user. All

actions will be executed as this user from now on.

 Return Values: Boolean success value.

 Arguments:

• username - Name of the user to change to

• password - Password for the user

• connection - Connection - result of i5_connect

i5 PHP API Toolkit

59

i5_error

bool i5_error([resource connection]).

 Description: Retrieves error information for last action that was

executed.

 Return Values: If there was no error, returns false. Otherwise, returns an

array with the following elements:

0 - error number, as in i5_errno().

1 - error category.

2 - error message, as in i5_errmsg().

3 - detailed description of the error.

 Arguments:

• connection - Connection - result of i5_connect

i5_errormsg

string i5_errormsg([resource connection]).

 Description: Gets error message for last executed action.

 Return Values: Error message string.

 Arguments:

• connection - Connection - result of i5_connect.

CL Calls

i5_command

bool i5_command(string command[, array inputs, array outputs, resource

connection]).

 Description: Calls CL command.

 Return Values: Boolean success value.

 Arguments:

• inputs - Array of name => value parts, name describing the call input

parameters.

Names should match i5 cl command parameter names.

If the array is empty or not provided, no input parameters are given. If

the value is integer, integer is passed, if the value is string, quoted

string is passed. If the value is an array, the list of contained values is

Zend Core for i5/OS User Guide

60

passed.

Note: The output parameter is required if the input parameter is

specified.

• outputs - Array which describes output parameters of the command. If

not provided, no output parameters are defined.

Key of the array defined i5 cl command parameter name

"rc" is a predefined name containing the result of the command.

Value can be string. If so - it defines a php variable name to accept the

parameter or array; it should have 2 elements:

• A php variable name to accept the parameter.

• Description of the parameter

Note: The input parameter is required if the output parameter is

specified.

• connection - Connection - result of i5_connect.

 Example:

i5_command("rtvjoba", array(), array("curlib" => "curl",.

"user"=>"user",.

"usrlibl" => "userlib",.

"syslibl" => array("syslib", "char(165)"), .

).

);.

print "User : $user
" ;.

print "User library : $userlib
" ;.

print "System libs list : $syslib
" ;.

print "Current library : $curl
" ;.

Program Calls

i5_program_prepare

resource i5_program_prepare(string name[, array description][, resource

connection]).

 Description: Opens a program and prepares it to be run.

 Return Values: Resource if open succeeded, false if open failed.

 Arguments:

• name - Program name. If a service procedure call is made done, the

procedure name is given in parentheses, e.g.,

Lib/Service_Program(PROC)

i5 PHP API Toolkit

61

• description - PHP-format program description. This should be provided

if the program is not described on server.

See PHP Data Description, page 58.

• connection - Result of i5_connect

i5_program_prepare_PCML

resource i5_program_prepare_PCML (array description[, resource connection]).

 Description: Opens a program PCML file and prepares it to be run.

 Return Values: Resource if open succeeded, false if open failed.

 Arguments:

• description - PCML file’s program and parameters information

• connection - Result of i5_connect

The program information file (in PCML format) can be created by compiling the

RPG program.

 Example:

CRTBNDRPG PGM(EACDEMO/TESTSTRUC)

 SRCFILE(EACDEMO/QRPGLESRC) SRCMBR(TESTSTRUC) PGMINFO(*PCML)

INFOSTMF('/www/zendcore/htdocs/teststruc.pcml')

The PCML file will contain the program parameters info. There are two ways

you can assign the program parameters to i5-program_prepare_PCML

description:

i. Copy the content of PCML file to you PHP script and assign the

i5_program_prepare_PCML description array to the PCML content. See

PCML Example 1

ii. Assign i5_program_prepare description array to the PCML file located

in the same PHP program directory. See PCML Example 2.

Zend Core for i5/OS User Guide

62

 PCML Example 1:

$description = "<pcml version=\"4.0\">

 <!-- RPG module: TESTSTRUC -->

 <!-- created: 2006-10-12-11.46.56 -->

 <!-- source: EACDEMO/QRPGLESRC(TESTSTRUC) -->

 <!-- 5 -->

 <struct name=\"S2\">

 <data name=\"ZOND2\" type=\"zoned\" length=\"10\"

precision=\"5\" usage=\"inherit\" />

 <data name=\"PACK2\" type=\"packed\" length=\"19\"

precision=\"5\" usage=\"inherit\" />

 <data name=\"PACK3\" type=\"packed\" length=\"19\"

precision=\"5\" usage=\"inherit\" />

 <data name=\"ALPH2\" type=\"char\" length=\"20\"

usage=\"inherit\" />

 </struct>

 <!-- 1 -->

 <struct name=\"S1\">

 <data name=\"ZOND\" type=\"zoned\" length=\"10\"

precision=\"5\" usage=\"inherit\" />

 <data name=\"PACK1\" type=\"packed\" length=\"19\"

precision=\"5\" usage=\"inherit\" />

 <data name=\"ALPH1\" type=\"char\" length=\"10\"

usage=\"inherit\" />

 </struct>

 <program name=\"TESTSTRUC\"

path=\"/QSYS.LIB/EACDEMO.LIB/TESTSTRUC.PGM\">

 <data name=\"CODE\" type=\"char\" length=\"10\"

usage=\"output\" />

 <data name=\"S1\" type=\"struct\" struct=\"S1\"

usage=\"inputoutput\" />

 <data name=\"S2\" type=\"struct\" struct=\"S2\"

usage=\"inputoutput\" />

 <data name=\"PACK\" type=\"packed\" length=\"1\"

precision=\"1\"

 usage=\"output\" />

 <data name=\"CH10\" type=\"char\" length=\"19\"

usage=\"output\" />

 <data name=\"CH11\" type=\"char\" length=\"20\"

usage=\"output\" />

i5 PHP API Toolkit

63

 <data name=\"CH12\" type=\"char\" length=\"29\"

usage=\"output\" />

 <data name=\"CH13\" type=\"char\" length=\"33\"

usage=\"output\" />

 </program>

</pcml>

 ";

 PCML Example 2:

($description =

file_get_contents("/www/zendcore/htdocs/teststruc.pcml"))

or trigger_error("Error while opening PCML file", E_USER_ERROR);

i5_program_call

bool i5_program_call(resource program, array params[, array retvals]).

 Description: Calls the program and optionally accepts results.

 Return Values: Boolean success value.

 Arguments:

• program - Program resource opened by i5_program_prepare.

• params - Parameters according to description.

Can be given as flat array, then parameters are assigned in order, or as

key => value pairs then the values are assigned to the parameter

named by the key

• retvals - Array of key => value pairs where keys describe output

parameter name and values name PHP variable that would receive the

parameter

Fetch should still work even if the return parameters are defined and assigned.

 Example:

$prog = i5_program_prepare("DEMOPGM");.

if(i5_program_call($prog, array(1,2,"abc"))) {.

$result = i5_fetch_assoc($prog);.

print "result is $result['retval']
";.

} else {.

print "Program call failed.
";.

}.

Note:

Use i5_COMMAND in order to invoke a program without parameters. For example,

i5_command("call LIB_NAME/PROGRAM_NAME").

Zend Core for i5/OS User Guide

64

i5_program_close

void i5_program_close(resource program).

 Description: Frees program resource handle.

 Return Values: Boolean success value.

 Arguments:

• program - Program resource opened by program_open.

Data Retrieval

i5_fetch_array

 array i5_fetch_array(resource result [, int option]).

 array i5_fetch_assoc(resource result [, int option]).

 object i5_fetch_object(resource result [, int option]).

 array i5_fetch_row(resource result [, int option]).

 Description: Fetches a row of data from the resource.

 Return Values: According to the specific fetch function used, it returns

either an array or an object containing the data:

• array - by index and name.

• assoc - by name.

• row - by index.

• object - by name as object properties.

 Arguments:

• result - Resource resulting from operation returning data

• option - Flag specifying which record to fetch.

 Current record - I5_READ_SEEK

 Next record - I5_READ_NEXT

 Previous record - I5_READ_PREV

 First record - I5_READ_FIRST

 Last record - I5_READ_LAST

 Default is I5_READ_NEXT

i5_info

array i5_info (resource result [, int/string field]).

 Description: Gets information about the file/record.

i5 PHP API Toolkit

65

 Return Values: An array with information about record. If there is no way

to return whole information; false is returned when the field parameter is

omitted.

 Arguments:

• result - Resource describing file or other record set

• field - Integer or string identifying the field. If this parameter is

omitted, whole file information is given (when possible).

i5_field_len

int i5_field_len (resource result, int/string field).

 Description: Gets field length.

 Return Values: field's length.

 Arguments:

• result - Resource describing file or other record set

• field - Integer or string identifying the field position or name.

i5_field_name

int i5_field_name (resource result, int field).

 Description: Get field name.

 Return Values: field's length.

 Arguments:

• result - Resource describing file or other record set

• field - Integer identifying the field position.

i5_field_scale

int i5_field_scale (resource result, int/string field).

 Description: Gets field scale - number of digits for numeric fields.

 Return Values: The number of digits of the field. If the field is not

numeric, returns –1.

 Arguments:

• result - Resource describing file or other record set

• field - Integer or string identifying the field position or name.

i5_field_type

string i5_field_type (resource result , int/string field).

 Description: Gets field type.

Zend Core for i5/OS User Guide

66

 Return Values: Field's type string.

 Arguments:

• result - Resource describing file or other record set .

• field - Integer or string identifying the field position or name.

i5_list_fields

array i5_list_fields (resource result).

 Description: Gets list of fields for resource.

 Return Values: Array containing field names, in order.

 Arguments:

• result - Resource describing file or other record set.

i5_num_fields

int i5_num_fields (resource result).

 Description: Get the numbers of fields for resource.

 Return Values: Number of fields.

 Arguments:

• result - Resource describing file or other record set.

i5_result

mixed i5_result (resource result, int/string field]).

 Description: Gets one field of the result.

 Return Values: Field's contents in current record.

 Arguments:

• result - Resource describing file or other record set.

• field - Integer or string identifying the field position or name.

Native File Access

i5_open

resource i5_open (string fileName [, int mode][,resource connection]).

 Description: Opens native i5 file.

 Return Values: Resource, if “open” is successful, false otherwise.

 Arguments:

• name - File name, may include library

i5 PHP API Toolkit

67

• mode - File mode to use:

I5_OPEN_READ - default

I5_OPEN_READWRITE

I5_OPEN_COMMIT

I5_OPEN_SHRRD

I5_OPEN_SHRUPD

I5_OPEN_SHRNUPD

I5_OPEN_EXCLRD

I5_OPEN_EXCL

• connection - Connection - result of i5_connect

Note:

OPEN_READ or I5_OPEN_READWRITE modes are required to be combine with

other modes. For example, $ret = i5_open ("LIB/FILE", I5_OPEN_READWRITE |

I5_OPEN_EXCL);

i5_addnew

bool i5_addnew (resource file [, int mode]).

 Description: Creates new record in the file. Use setvalue() to set values

in new record, then update() to write it to file. i5_new_record() is an

atomic function doing all the work.

 Return Values: Resource if open succeeded, false if “open” failed.

 Arguments:

• file - Opened i5 file.

• mode - I5_ADDNEW_CLEAR: clears all record fields (default).

I5_ADDNEW_NOCLEAR: does not clear all record fields

i5_edit

bool i5_edit (resource file [, int mode]).

 Description: Sets editing mode for the record. In order for a value to be

changed, it should be set in edit mode. This locks the record so that other

users cannot edit it simultaneously.

 Return Values: Boolean success value. Returns false if the record is

already being edited by other used.

 Arguments:

• file - i5 file resource.

• mode - Editing mode:

I5_EDIT_ONE leaves edit mode after i5_update() and also after

reading or i5_delete().

Zend Core for i5/OS User Guide

68

I5_EDIT_ALWAYS remains in edit mode until i5_cancel_edit() is

called.

I5_EDIT_AUTO is called automatically therefore there is no need

to call i5_update() after setting values.

i5_delete

bool i5_delete (resource file).

 Description: Remove current record.

 Return Values: Boolean success value. Return is false if the record is

already being edited by other used.

 Arguments:

• file - i5 file resource.

i5_cancel_edit

bool i5_cancel_edit (resource result).

i5_setvalue

bool i5_setvalue (resource file, int/string field, mixed value).

bool i5_setvalue (resource file, array values).

 Description: Changes the value of the current record. The record should

be in edit mode after i5_edit() or created by i5_addnew().

 Return Values: Boolean success value.

 Arguments:

• file - i5 file resource.

• field - Field identifier by name or position.

• value - Value for the field.

• values - Set of key=>value parts describing fields to change and their

new values.

i5_update

bool i5_update (resource file).

 Description: Commits changes done to the file record after i5_edit() or

i5_addnew() into the file.

 Return Values: Boolean success value.

 Arguments:

• file - i5 file resource.

i5 PHP API Toolkit

69

i5_range_from

bool i5_range_from (resource file,bool included,array values).

 Description: Sets an upper range bound for the file. Once the bound is

set, the first line for all seeks becomes the line defined by the range.

 Return Values: Boolean success value.

 Arguments:

• file - i5 file resource.

• included - True if the field with this key should be included in the range,

false otherwise.

• values - Values for the key fields - array of key=>value pairs.

i5_range_to

bool i5_range_to (resource result,bool included, array values).

 Description: Sets a lower range bound for the file. Once the bound is set,

the last entry for all seeks becomes the entry defined by the range.

 Return Values: Boolean success value.

 Arguments:

• file - i5 file resource

• included - True if the field with this key should be included in the range,

false otherwise.

• values - Values for the key fields - array of key=>value pairs.

i5_range_clear

bool i5_range_clear (resource file).

 Description: Removes range. Reverses the action of range_from() and

range_to().

 Return Values: Boolean success value.

 Arguments:

• file - i5 file resource

i5_data_seek

bool i5_data_seek (resource result, int record_number).

 Description: Seeks to a specific record of the result.

 Return Values: Boolean success value.

 Arguments:

Zend Core for i5/OS User Guide

70

• file - i5 file resource.

• Record_number - Number of the record to seek to, starting from 0.

i5_seek

bool i5_seek (resource file, int/string operator, array keyValue).

 Description: Goes to a specific record in query/file.

 Return Values: Boolean success value.

 Arguments:

• file - i5 file resource

• operator - Comparison operator. Position is set to first record satisfying

the operator. Available operators:

I5_EQ "="

I5_GT ">"

I5_LT "<"

I5_GE ">="

I5_LE "<="

• keyValue - values of the keys to compare

i5_bookmark

int i5_bookmark (resource file).

 Description: Return Values the ID of the current record.

 Return Values: The ID of the current record that can be used with

i5_data_seek() to position on this record again.

 Arguments:

• file - i5 file resource.

i5_free_file

bool i5_free_file (resource file).

 Description: Closes file handle and frees file resources.

 Return Values: Boolean success value.

 Arguments:

• file - i5 file resource.

Additional functions to the existing API.

i5_new_record

bool i5_new_record (resource file, array data).

 Description: Creates a new record in the file and inserts data into it.

i5 PHP API Toolkit

71

 Return Values: Boolean success value.

 Arguments:

• file - Opened i5 file resource.

• data - Array of data fields conforming to file description.

Can be either a flat array or key-value pairs, e.g., i5_setvalue arguments.

i5_update_record

bool i5_update_record (resource file, array data).

 Description: Updates the current row with given data.

 Return Values: Boolean success value.

 Arguments:

• file - Opened i5 file resource.

• data - Array of data fields conforming to file description.

Can be either flat array or key-value pairs, like i5_setvalue arguments.

 Example:

$file = i5_open("API/TESTFILE", I5_OPEN_READWRITE);.

$rec = i5_fetch_row($file, I5_READ_FIRST);.

i5_update_record($file, array("CODE" => "C-02", "NOM" => "DUPONT",

"TYPE" => 3));.

i5_new_record($file, array('C-105', 'DUPOND', 'Jean', 'Avenue du Qubec',

'Les Ulis', 3, 'FR'));.

i5_delete_record

bool i5_delete_record(resource file).

 Description: Removes current record.

 Return Values: Boolean success value. False value is returned if the

record is already being edited by other used.

 Arguments:

• File - Opened i5 file resource.

 Example:

$file = i5_open("API/TESTFILE", I5_OPEN_READWRITE);.

i5_new_record($file, array('C-105', 'DUPOND', 'Jean', 'Avenue du Qubec',

'Les Ulis', 3, 'FR'));.

$rec = i5_fetch_row($file, I5_READ_FIRST);.

i5_update_record($file, array("CODE" => "C-02", "NOM" => "DUPONT",

"TYPE" => 3));.

Zend Core for i5/OS User Guide

72

i5_delete_record($file);

i5_get_keys

array i5_get_keys(resource file).

 Description: Gets information about key fields in the file.

 Return Values: An array of integers specifying positions for key fields in

the file. Can then use i5_info to discover descriptions of these fields.

 Arguments:

• file - Opened i5 file resource.

SQL File Access

i5_query

resource i5_query (string query [, resource connection])

 Description: Executes an SQL statement directly

 Return Values: For SELECT request returns resource if statement was

executed successfully and FALSE in case of error. For INSERT, UPDATE

and DELETE requests returns TRUE if statement was executed successfully

and FALSE in case of error.

Note:

i5_query function is suitable for SQL requests without parameters. If you plan to

issue the same SQL statement with different parameters, consider using

i5_prepare() and i5_execute().

 Arguments:

• Query - SQL request string such as SELECT, INSERT, DELETE, UPDATES

and etc

• connection - result of i5_connect

i5 PHP API Toolkit

73

 Example:

/* Straight request execution */

$query = i5_query("SELECT * FROM EACDEMO/SP_CUST");

if(!$query)){

echo "Error code: " . i5_errno($query) . "
";

echo "Error message: " . i5_errormsg($query) . "
";

 }

else {

/* Read records and display */

echo "<table>";

while ($values == i5_fetch_row($query, I5_READ_NEXT)) {

echo "<tr>";

echo "<td>" .$values[0]. "</td>";

echo "<td>" .$values[1]. "</td>";

echo "<td>" .$values[2]. "</td>";

echo "<td>" .$values[3]. "</td>";

echo "<td>" .$values[4]. "</td>";

echo "<td>" .$values[5]. "</td>";

echo "</tr>";

}

echo "</table>";

i5_prepare

resource i5_prepare (string query [, resource connection])

 Description: Prepares an SQL statement to be executed

Query parameter may include one or several SQL variables if question

marks (?) are set at the right places. There are three main advantages

using prepared requests in your script: Performance: While preparing a

request, database server creates a return optimized path in order to

collect the requested data's. Later on, when the i5_prepare prepared

request is sent, it will use the path avoiding processor overload with each

request sent. Safety: While preparing a request, it is possible to set

markers for entry values. Processing the prepared request with entry

values, Easycom checks each entry value to make sure that their type

match with the column or the description parameters. Advanced

Functionality: Markers not only allow introducing entry values in stored

procedure, but also allow collecting OUTPUT and INPUT/OUTPUT recording

procedure parameters using i5_bind_param function.

Zend Core for i5/OS User Guide

74

 Return Values: Returns a statement resource if the SQL statement was

successfully parsed and prepared by the database server. FALSE if the

database server returned an error.

 Arguments:

• query - SQL request to prepare

• connection - result of i5_connect

i5_bind_result

bool i5_bind_result (resource result/query, mixed &var1 [,mixed &var2 ...])

-Or-

bool i5_bind_result (resource result/query, mixed &var, string namefield)

 Description: Binds a PHP variable to an SQL statement parameter in a

statement resource returned by i5_prepare().

 Returns TRUE on success or FALSE on failure.

 Arguments:

• query/stmt - 5_prepare prepared request ID

• var1 , &var2 - variables to associate referenced list

• namfield - request field or associated file name

i5_execute

bool i5_execute (resource stmt [,params])

 Description: Executes a prepared SQL statement

i5_execute executes an SQL request prepared with i5_prepare. If the SQL

statement returns a result set, for example, a SELECT statement or a CALL

to a stored procedure that returns one or more result sets, you can

retrieve a row as an array from the stmt resource using i5_fetch_array,

i5_fetch_assoc or i5_fetch_row. If the request creates several results sets,

i5_next_result function moves pointer to the next available set.

i5_execute is much more efficient than i5_query if the same request has

to be run several times with only few parameter changes.. Refer to

i5_prepare for a brief discussion of the advantages of using i5_prepare

and i5_execute rather than i5_query.

A request may contain markers, identified with "?" sign. These markers

i5 PHP API Toolkit

75

can be linked to PHP variables (seer i5_bind_param), the results may be

linked to PHP variables using i5_bind_result function.

 Return Values: Returns Boolean and updated stmt resource in case of

success FALSE if it fails

 Arguments:

• stmt - A prepared statement returned from i5_prepare

• params - Input parameters matching any parameter markers contained

in the prepared statement.

 Example:

$town = "Paris";

/* Prepare a request */

$req = i5_prepare("SELECT area FROM cities WHERE Name=?");

if ($req) {

 /* Associate SQL variables */

 i5__bind_param($req, $town);

 /* Execute the request */

 i5_execute($req);

 /* Associate the results variables */

 i5_bind_result($req, $region);

 /* Read records */

 i5_fetch_row($req);

 printf("%s is in area %s\n", $town, $region);

i5_getblob

string i5_getblob(resource result, int position)

-Or-

string i5_getblob(resource result, string namefield)

 Description: Reads binary data from a BLOB field type.

This function applies to SELECT type (i5_queryi5_query or

i5_executei5_execute) requests containing one or more BLOB type fields.

Note:
Reading and writing a blob requires a transaction.

 Return Values: String with BLOB binary chain or FALSE on failure

 Arguments:

• result - File ID

• position - BLOB field index

Zend Core for i5/OS User Guide

76

• namfield - BLOB field name

 Example:

$sql = "SELECT BLOB_COLUMN FROM BLOB_TABLE;";

$res = i5_query($sql);

$line = i5_fetch_row($res);

/* $line[0] contains blob ID */

$blob_data = i5_getblob($line[0], $res);

/* the blob can be displayed or processed */

i5_setblob

bool i5_setblob (resource stmt, int position, string blob)

 Description: Writes a binary data in a BLOB field type.

This function only applies to parameterized requests resources and is used

the same way as i5_setparam function.

Note:

Writing a blob requires a transaction.

 Return Values: TRUE on success or FALSE on failure

 Arguments:

• result - Parameterized file ID

• position - Parameter index

• blob - Binary chain content

i5 PHP API Toolkit

77

 Example

/* Writing jpeg file content in blob */

$slq = "INSERT INTO CONTACTS (NAME, PRENOM, PHOTO) VALUES

(?,?,?)";

$req_prepa = i5_prepare($sql);

if ($req_prepa) {

 $name = "DUPONT";

 $préname = "HENRY";

 $file_image = fopen("hdupont.jpg", 'r');

 $contents = fread($file_image, filesize($file_image));

 $ret0 = i5_setparam($file_as, 0, $name);

 $ret1 = i5_setparam($file_as, 1, $prenom);

 $ret2 = i5_setblob($file_as, 2, $contents);

 $ret = i5_execute($file_as);

 if ($ret) {echo "Blob writing successful.\n";}

 }

i5_setparam

bool i5_setparam (resource stmt, int position, mixed value)

 Description: Allocates parameter to parameterized request.

This function is an alternative to i5_bind_param function (automatically

linked). It allows explicit value allocation to a parameter.

Note:

Request must be prepared with i5_prepare function.

 Return Values: TRUE on success or FALSE on failure

 Arguments:

• stmt - i5_prepare prepared request ID

• position - parameter index (marker) in the request

• value - parameter allocated value

Zend Core for i5/OS User Guide

78

 Example 1:

$insert = 'INSERT INTO animals (id, race, name, weight) VALUES

(?, ?, ?, ?)';

$req = i5_prepare($insert);

$animals = array(0, 'cat', 'Mistinguette', 3.2);

if ($req) {

 $result = i5_execute($req, $animals);

 if ($result) {

 print "Mistinguette adding successful.";

 }

 i5_setparam($req, 3, "Minouche");

 i5_setparam($req, 4, 3.8);

 $result = i5_execute($req, $animals);

 if ($result) {

 print "Hercule adding successful.";

 }

 Example 2 - Calling stored procedures with IN parameter

The stored procedure in the following example accepts one parameter:

1. Create table

2. an input (IN) parameter that accepts the name of the first animal as input

3. an input-output (INOUT) parameter that accepts the name of the second

animal as input and returns the string TRUE if an animal in the database matches

that name

4. an output (OUT) parameter that returns the sum of the weight of the two

identified animals

In addition, the stored procedure returns a result set consisting of the

animals listed in alphabetic order starting at the animal corresponding to

the input value of the first parameter and ending at the animal

corresponding to the input value of the second parameter.

i5 PHP API Toolkit

79

<?php

//

//CREATE TABLE SQL_LIB/TEST2 (A DATE NOT NULL WITH DEFAULT)

//

//

//create procedure SQL_LIB/test_a1(in parm1 date)

//language SQL

//begin

//

//set transaction isolation level UR;

//insert into SQL_LIB/TEST2 values(parm1) ;

//commit;

//end;

$user = 'USER';

$password = 'PASS';

$conn_resource = i5_connect('127.0.0.1',$user,$password);

echo "Begin
";

if (!$conn_resource) {

echo i5_errormsg();

exit();

}

$sql = "CALL SQL_LIB/TEST_A1(?)";

$stmt= i5_prepare($sql);

$val = '2007-05-22';

$ret = i5_paramdesc($stmt, I5_TYPE_CHAR, 0, 10, 0, I5_INOUT);

$ret = i5_setparam($stmt, 0, $val);

$result = i5_execute($stmt);

if($result === false){

echo "Execute Error:". i5_errno()." Msg:".i5_errormsg()."
";

//echo $err;

}

else {

"
executed";

}

echo "
end";

?>

Zend Core for i5/OS User Guide

80

i5_free_query

bool i5_free_query (resource query)

 Description: Frees SQL request result

Removes a query type resource (i5_query or i5_execute) from memory

This function needs only to be called if your script requires too much

memory, when a request returns very large results or if a large requests

number are processed and may overload the web server memory. It is

recommended to use this function to free memory resource used by SQL

request. All memory resources are freed when the SQL request is ended.

 Return Values: TRUE on success or FALSE on failure

 Arguments:

• query - query resource

Transactions

i5_transaction

bool i5_transaction (int mode [, resource connection])

 Description: Starts transaction.

 Return Values: Returns TRUE if transaction has started, FALSE in case of

error

 Arguments:

• mode - Transaction modes:

o I5_ISOLEVEL_CHG - READ UNCOMMITED, READ WRITE (UR)

- Modified records remain locked.

- Modifications are showed

o I5_ISOLEVEL_CS - READ COMMITED (CS)

- Read records are locked.

- Modified records remain locked.

- Changes are not showed

o I5_ISOLEVEL_ALL - REPEATABLE READ (RS)

- Read records remain locked.

- Modified records remain locked.

- Modifications are not showed.

o I5_ISOLEVEL_NONE - No transactions

- Each record is commited immediately

• connection - result of i5_connect

i5 PHP API Toolkit

81

 Example:

<?php

$conn = i5_connect("MY_i5", "USER", "PASSWORD");

if ($conn) {

 $res = i5_query("SELECT count(*) FROM animals");

 $rec = i5_fetch_array($res);

 echo $rec[0] . "\n";

 /* Start a transaction */

 i5_transaction(I5_ISOLEVEL_NONE, $conn);

 /* Add records to ANIMALS table */

 i5_query("INSERT INTO animals VALUE 'Cat', 'Mistigri'");

 $res = i5_query("SELECT count(*) FROM animals");

 $rec = i5_fetch_array($res);

 echo $res[0] . "\n";

i5_commit

bool i5_commit([string comment] [resource connection])

 Description: Commits an in-progress transaction.

 Return Values: TRUE if transaction is valid, FALSE in case of error.

 Arguments:

• comment - a transaction comment that will be added to the journal

• Connection - result of i5_connect

Zend Core for i5/OS User Guide

82

 Example:

$conn = i5_connect("MY_i5", "USER", "PASSWORD");

if ($conn) {

 $res = i5_query("SELECT count(*) FROM animals");

 $rec = i5_fetch_array($res);

 echo $rec[0] . "\n";

 /* Start a transaction */

 i5_transaction(I5_ISOLEVEL_NONE);

 /* Insert records to ANIMALS table*/

 i5_query("INSERT INTO Animals VALUES ('CAT', 'Misstic', 'F',

3.2)");

 i5_query("INSERT INTO Language VALUES ('DOG', 'Hercule',

'M', 4.4)");

 $res = i5_query("SELECT count(*) FROM animals");

 $rec = i5_fetch_array($res);

 echo $rec[0] . "\n";

 /* Commit the changes */

 i5_commit($conn);

 $res = i5_query("SELECT count(*) FROM animals");

 $rec = i5_fetch_array($res);

 echo $rec[0] . "\n";

 i5_close($conn);

 }

i5_rollback

bool i5_rollback ([resource connection])

 Description: Rolls back a transaction.

 Return Values: TRUE on success or FALSE on failure

 Arguments:

• connection - result of i5_connect

i5 PHP API Toolkit

83

 Example:

<?php

$conn = i5_connect("MY_i5", "USER", "PASSWORD");

if ($conn) {

 $res = i5_query("SELECT count(*) FROM animals");

 $rec = i5_fetch_array($res);

 echo $res[0] . "\n";

 /* Start a transaction*/

 i5_transaction($conn);

 /* Delete all records from the ANIMALS table */

 i5_query("DELETE * FROM animals");

 $res = i5_query("SELECT count(*) FROM animals");

 $rec = i5_fetch_array($res);

 echo $res[0] . "\n";

 /* Cancel the DELETE operation */

 i5_rollback($conn);

 $res = i5_query("SELECT count(*) FROM animals");

 $rec = i5_fetch_array($res);

 echo $rec[0] . "\n";

 i5_close($conn);

 }

?>

Data Queues

i5_dtaq_prepare

resource i5_dtaq_prepare(string name, array description [,int key][,resource

connection])

 Description: Opens a data queue with optional description.

 Return Values: Resource if OK, false if failed.

 Arguments:

• name - The queue name

Zend Core for i5/OS User Guide

84

• description - Data description in format defined by program¬_prepare.

For more, see Easycom PHP Data Description at the end of this

document.

• key - key size - for keyed DataQ

• connection - Connection - result of i5_connect

i5_dtaq_receive

mixed i5_dtaq_receive(resource queue[, string/int operator, string key][, int

timeout])

 Description: Reads data from the data queue.

 Return Values: False if could not read because of error or timeout, the

data read from the queue otherwise.

 Arguments:

• queue - resource received from dtaq_open

• operator:

"EQ"

"GT"

"LT"

"GE"

"LE"

• key- key value to look for

• timeout - timeout value in seconds

i5_dtaq_send

bool i5_dtaq_send(resource queue, string key, mixed data)

 Description: Puts data to the data queue.

 Return Values: False if could not be written because of error, true

otherwise.

 Arguments:

• queue - resource received from dtaq_open

• key - key value to look for

• data - data to put into the queue

The data should conform to the description format, and can be either in flat array

or key->value pair array.

i5 PHP API Toolkit

85

i5_dtaq_close

bool i5_dtaq_close(resource queue)

 Description: Free program resource handle.

 Return Values: Bool success value.

 Arguments:

• queue - resource received from dtaq_open

 Example 1:

<?php

$description = array("Name"=>"DATA", "Type"=>I5_TYPE_CHAR,

"Length"=>50);

$dtaqHdl_KEY = i5_dtaq_prepare("EACDEMO/DTAQ_KEY", $description,

5);

$ret = i5_dtaq_send($dtaqHdl_KEY, "mykey", "the dataqueue test

data");

var_dump($ret);

if(!$ret) var_dump(i5_error());

$ret = i5_dtaq_receive($dtaqHdl_KEY, "EQ", "mykey");

var_dump($ret);

?>

 Example 2:

<?php

$descriptionC = array("DSName"=>"PS", "DSParm"=>array(

array("Name"=>"PS1", "Type"=>I5_TYPE_CHAR, "Length"=>"10"),

array("Name"=>"PS2", "Type"=>I5_TYPE_PACKED, "Length"=>"10.4"),

array("Name"=>"PS3", "Type"=>I5_TYPE_CHAR, "Length"=>"10")

)

);

$dtaqHdl_KEY = i5_dtaq_prepare("EACDEMO/DTAQ_KEY",

$descriptionC, 10);

$parameter = array("PS1"=>"test1", "PS2"=>13.1415,

"PS3"=>"test2");

$key = "abcd";

$ret = i5_dtaq_send($dtaqHdl_KEY, $key, $parameter);

var_dump($ret);

$ret = i5_dtaq_receive($dtaqHdl_KEY, "EQ", $key);

var_dump($ret);

?>

Zend Core for i5/OS User Guide

86

System Values

i5_get_system_value

string i5_get_system_value(string name[, resource connection]).

 Description: Retrieves system value

 Return Values: System value, false if not found.

 Arguments:

• name - Name of the system value.

• connection - Connection - result of i5_connect.

 Example:

 print "Date is: ".i5_get_system_value("QDATE");.

User Spaces

i5_userspace_create

bool i5_userspace_create(properties[, resource connection]).

 Description: Creates a new user space object.

 Return Values: Boolean success value

 Arguments:

• properties -

I5_INITSIZE – The initial size of the user space being created.

This value must be from 1 byte to 16, 776, 704 bytes.

I5_DESCRIPTION – user space description

I5_INIT_VALUE – The initial value of all bytes in the user space.

I5_EXTEND_ATTRIBUT – extended attribute. The extended

attribute must be a valid *NAME. For example, an object type of

*FILE has an extended attribute of PF (physical file), LF (logical

file), DSPF (display file), SAVF (save file), and so on.

I5_AUTHORITY – The authority you give users who do not have

specific private or group authority to the user space

I5_LIBNAME – Library name where the user space is located

I5_NAME – User space name (10 char max)

• connection - Result of i5_connect

i5 PHP API Toolkit

87

i5_userspace_prepare

resource i5_userspace_prepare(string name, array description [, resource

connection]).

 Description: Opens a user space and prepares it to be run.

 Return Values: Resource if open succeeded, false if open failed.

 Arguments:

• name - User space name in library/object format

• description - Data description in format defined by program_prepare.

See PHP Data Description, page 58.

• connection - Result of i5_connect

i5_userspace_get

resource i5_userspace_get(resource user space, array params)

 Description: Retrieve user space data.

 Return Values: Boolean success value.

 Arguments:

• user space - User Space resource opened by i5_userspace_prepare

• params - Parameters according to description. If given as flat array,

then parameters are assigned in order

i5_userspace_put

bool i5_userspace_put(resource user space, params)

 Description: Add user space data

 Return Values: Boolean success value.

 Arguments:

• user - space User Space resource opened by i5_userspace_prepare

• params - Parameters according to description. If given as flat array,

then parameters are assigned in order

Job Log List

i5_jobLog_list

resource i5_jobLog_list([array elements, resource connection])

 Description: Opens job log.

Zend Core for i5/OS User Guide

88

 Return Values: The resource for fetching job log list if OK and false if

failed.

 Arguments:

• elements - JobName, JobUser, JobNumber, MaxMessage, Direction

(default is current job)

• connection - Result of i5_connect

Use i5_jobLog_list_read function to retrieve the job entries from this handle.

i5_jobLog_list_read

array i5_jobLog_list_read(resource list)

 Description: Get an array for a job log entry.

 Return Values: Array with the message element if OK, false if failed.

 Arguments:

• list - Resource returned by i5_jobLog_list function

i5_jobLog_list_close

bool i5_jobLog_list_close (resource handle)

 Description: Close handle received from i5_jobLog_list().

 Return Values: Boolean success value

 Arguments:

• handle - Job list handle as returned by i5_jobLog_list()

Active Job List

i5_job_list

resource i5_job_list([array elements, resource connection])

 Description: Open active job list.

 Return Values: The resource for fetching job list if OK and false if failed.

 Arguments:

• elements - JobName, JobUser, JobNumber, JobType, Direction (default

is current job)

• connection - Result of i5_connect

Use i5_job_list_read function to retrieve the job entries from this handle.

i5 PHP API Toolkit

89

i5_job_list_read

array i5_job_list_read(resource list)

 Description: Get an array for an active job entry.

 Return Values: Array with the job entry element if OK, false if failed.

 Arguments:

• List - Resource returned by i5_job_list function

i5_job_list_close

bool i5_job_list_close (resource handle)

 Description: Close handle received from i5_job_list().

 Return Values: Boolean success value

 Arguments:

• handle - Job list handle as returned by 15_job_list()

Data Areas

i5_data_area_create

bool i5_data_area_create(string name, int size[, resource connection]).

 Description: Creates data area of given size

 Return Values: Boolean success value.

 Arguments:

• name - Name of the data area.

• size - Size in bytes of the data area.

• connection - result of i5_connect .

i5_data_area_read

string data_area_read(string name[, int offset, int length][, resource

connection]).

 Description: Reads data from the area

 Return Values: String data if read successful, false if read failed

(including when offset is wrong).

 Arguments:

• name - Name of the data area.

• offset - Offset for the data.

Zend Core for i5/OS User Guide

90

• length - Length of the data to read, -1 means whole area.

• connection - Connection - result of i5_connect.

If no offset is specified, all the area is read.

i5_data_area_write

bool data_area_write(string name, string value[, int offset, int length][, resource

connection]).

 Description: Writes data to the area

 Return Values: Boolean success value.

 Arguments:

• name - Name of the data area.

• value - Value to write.

• Offset - Offset for the data.

• length - Length of the data to read.

• connection - result of i5_connect .

If no offset is specified, all the area is written. If value is shorter than length it is

padded to the length. If it's longer it is truncated.

i5_data_area_delete

bool data_area_delete(string name[, resource connection]).

 Description: Delete the data area

 Return Values: Boolean success value.

 Arguments:

• name - Name of the data area.

• connection - Connection - result of i5_connect.

Spooled File

i5_spool_list

resource i5_spool_list([array description][, resource connection])

 Description: Create an spool file lists, of certain output queue or for all

queues.

 Return Values: resource if OK, false if failed

 Arguments:

• description - The data by which the sppol files will be filtered, array

with following keys:

i5 PHP API Toolkit

91

• username - username that created the job

• outq - qualified name for the output queue containing the spool file

• userdata - the user-supplied key data for the spool file. All keys are

optional and can be provided together

• connection - result of i5_connect.

i5_spool_list_read

array i5_spool_list_read(resource spool_list)

 Description: Gets spool file data from the queue.

 Return Values: next spool file data array in the list, or false if queue is

empty.

 The data will be formated using SPLF0300 format. See following link for

more details:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/ap

is/QUSLSPL.htm

 Arguments:

• Spool_list resource received from i5_spool_list

i5_spool_list_close

void i5_spool_list_close(resource spool_list)

 Description: Free spool list resource

 Return Values: Boolean success value

 Arguments:

• Queue - resource received from i5_spool_list

i5_spool_get_data

string i5_spool_get_data(string spool_name, string jobname, integer

job_number, string username, integer spool_id [,string filename])

 Description: Get the data from the spool file.

 Return Values: String if no file name passed as parameter, false if

function failes

 Arguments:

• spool_name - The spool file name

• job_name - The name of the job that created the file

• job_number - The number of the job that created the file

• username - The username of the job that created the file

Zend Core for i5/OS User Guide

92

• spool_id - ID of the spool file in the queue (as returned by outq_read)

• filename - IFS filename to store the data. If not provided, the data is

returned as string

Object Listing

i5_objects_list

resource i5_objects_list(string library, [string name, string type, resource

connection])

 Description: Open an object list.

 Return Values: Resource for fetch if everything is OK, false on error.

 Arguments:

• library - Library name (can be also *CURLIB or I5_CURLIB)

• name - Name or wildcard of objects to read, default is “all”.

• type - Object type to fetch (*ALL or I5_ALL_OBJECTS for all)

• connection - Connection - result of i5_connect

i5_objects_list_read

array i5_objects_list_read (resource list)

 Description: Get an array for an object list entries.

 Return Values: Array with the object element if OK; false if failed.

 Arguments:

• List - Resource returned by i5_objects_list

i5_ objects_list _close

bool i5_ objects_list_close (resource handle)

 Description: Close handle received from i5_ objects_list ().

 Return Values: Boolean success value

 Arguments:

• handle - Object list handle as returned by i5_ objects_list ()

i5 PHP API Toolkit

93

PHP Data Description
Data structures are defined via PHP as follows:

Main data is the array of values, having the following fields:

 Name - name of the field

 Type - type of the field, can be:

• I5_TYPE_SHORT

• I5_TYPE_LONG

• I5_TYPE_DOUBLE

• I5_TYPE_BIN

• I5_TYPE_DATE

• I5_TYPE_TIME

• I5_TYPE_TIMESTP

• I5_TYPE_DBCS

• I5_TYPE_LONG8

• I5_TYPE_NUMERICCHAR

• I5_TYPE_BLOB

• I5_TYPE_CLOB

• I5_TYPE_UNICODE

• I5_TYPE_VARCHAR

• I5_TYPE_VARBIN

 Length

• For CHAR, BYTE - integer describing length. Length can be number or

name of the variable holding the length in the data structure.

• For PACKED, ZONED - string "NUMBER.NUMBER" defining length and

precision

• For STRUCT - array containing data definition of the structure

• For INT, FLOAT - ignored

 IO

• I5_IN

• I5_OUT

• default is input, these values can be OR'ed together to get input-output

value

Zend Core for i5/OS User Guide

94

 Count (optional) - repetition count if the field is an array

 CountRef (optional) - reference to the repetition count if the field is an

array

Data structure is defined via PHP as follows:

 DSName - name of the parameter

 DSParm (optional) - array of the parameter of the Data structure. Each

parameter is defined by a simple data definition.

Example:

<?php

$description = Array(

array("Name"=>"P1", "IO"=>I5_INOUT,

"Type"=>I5_TYPE_CHAR, "Length"=>"10", "count"=>5),

array("Name"=>"P2C", "IO"=>I5_INOUT, "Type"=>I5_TYPE_LONG),

array("Name"=>"P2", "IO"=>I5_INOUT, "Type"=>I5_TYPE_CHAR,

"Length"=>"1", "countRef"=>"P2C"),

array("DSName"=>"PS", "count"=>2, "DSParm"=>array(

array("Name"=>"PS1", "IO"=>I5_IN|I5_OUT, "Type"=>I5_TYPE_CHAR,

"Length"=>"10"),

array("Name"=>"PS2", "IO"=>I5_IN|I5_OUT, "Type"=>I5_TYPE_CHAR,

"Length"=>"10"),

array("Name"=>"PS3", "IO"=>I5_IN|I5_OUT, "Type"=>I5_TYPE_CHAR,

"Length"=>"10"),

)

)

);

$prg = i5_program_prepare("MYLIB/PERSONPGM", $description);

?>

Command Constants

I5_CURLIB (Default Value = "*CURLIB")

I5_ALL_OBJECTS (Default value = "*ALL")

I5_ALL_NAMES (Default value = "*")

I5_LIST_MINIMAL

I5_LIST_DETAILED

I5_LIST_FULL

i5 PHP API Toolkit

95

Active Job (i5_job_list) array elements constants

i5_JOB_ACT_JOB_STS

I5_JOB_BRKMSG

I5_JOB_CNTRYID

I5_JOB_POOL_ID

I5_JOB_PROCESS_UNIT_TIME_DB

I5_JOB_DATETIME_SCHED

I5_JOB_DATSEP

I5_JOB_DFTWAIT

I5_JOB_DFTCCSID

I5_JOB_ENDSEV

I5_JOB_FUNC_NAME

I5_JOB_GRPPRFNAME

I5_JOB_ACCOUNT_CODE

I5_JOB_QUEUE_NAME

I5_JOB_JOBMSGQFL

I5_JOB_USRID_SETTING

I5_JOB_TYPE_ENHANCED

I5_JOB_LOGCLPGM

I5_JOB_MODE_NAME

I5_JOB_MAX_THREADS

I5_JOB_MSGRPL

I5_JOB_ MCH_LCKW

I5_JOB_OUTQ_NAME

I5_JOB_PRTDEVNAME

I5_JOB_PROG_RETCODE

I5_JOB_RESPONSE_TIME

I5_JOB_STRSEQ

I5_JOB_SBMJOB

I5_JOB_SYSPOOLID

I5_JOB_SGNSTS

I5_JOB_TIMSEP

I5_JOB_TMPSTGK

I5_JOB_TIME_NONDB_LCKW

I5_JOB_ALW_MULTI_THRE

ADS

I5_JOB_CANCEL_KEY

I5_JOB_USRPRF

I5_JOB_CHAR_ID_CTRL

I5_JOB_DATETIME_ACTIVE

I5_JOB_DATETIME_JOBQ

I5_JOB_DBCS_CAP

I5_JOB_DEVRCYACN

I5_JOB_DECFMT

I5_JOB_ENDSTS

I5_JOB_FUNC_TYPE

I5_JOB_GRPPRFNAME_SUP

I5_JOB_DATE

I5_JOB_QUEUE_PTY

I5_JOB_JOBMSGQ_SIZE

I5_JOB_END_REASON

I5_JOB_LANGID

I5_JOB_LOGSEV

I5_JOB_MAX_PROC_UNIT_

TIME

I5_JOB_MAX_TMP_STG_M

I5_JOB_INTERACTIVE_TRS

I5_JOB_NONDB_LCKW

I5_JOB_OUTQ_PTY

I5_JOB_PURGE

I5_JOB_PENDING_SGNSET

I5_JOB_RUNPTY

I5_JOB_STS_MSGHDL

I5_JOB_SBMMSGQ

I5_JOB_SPCLENV

I5_JOB_SVRTYPE

I5_JOB_TIMESLICE

I5_JOB_TIME_DB_LCKW

I5_JOB_THREADCNT

I5_JOB_ACT_ENDJOB_STS

I5_JOB_CCSID

I5_JOB_COMPLETION_STS

I5_JOB_PROCESS_UNIT_TIME

I5_JOB_DATETIME_IN

I5_JOB_DATFMT

I5_JOB_DDM_HANDLE

I5_JOB_DEVNAME

I5_JOB_DATETIME_END

I5_JOB_EXITKEY

I5_JOB_SIGNED_JOB

I5_JOB_INQMSGRPLY

I5_JOB_DESC_NAME

I5_JOB_SWITCHES

I5_JOB_USRID

I5_JOB_LOG_PENDING

I5_JOB_LOGLVL

I5_JOB_LOGTEXT

I5_JOB_MAX_TMP_STG_K

I5_JOB_MEM_POOL_NAME

I5_JOB_DB_LCKWAIT

I5_JOB_AUX_IOREQ

I5_JOB_PRTTEXT

I5_JOB_PRD_RETCODE

I5_JOB_PROCESS_ID

I5_JOB_ROUTING_DATA

I5_JOB_STS_JOBQ

I5_JOB_SBSD

I5_JOB_SGNBLK_MASK

I5_JOB_SPLFILE_ACTION

I5_JOB_TIMESLICE_END

I5_JOB_TIME_MCH_LCKW

Zend Core for i5/OS User Guide

96

Job Log Constants (i5_jobLog_list) array elements constants

I5_LOBJ_MESSAGE_SEVERITY

I5_LOBJ_MESSAGE_IDENTIFIER

I5_LOBJ_MESSAGE_FILELIBRARY

I5_LOBJ_TIMESENT_MICRO

I5_LOBJ_MESSAGE_TYPE

I5_LOBJ_DATASENT

I5_LOBJ_MESSAGE_FILENAME

I5_LOBJ_TIMESENT

I5_LOBJ_ALERTOPT

I5_LOBJ_MSGDTA

I5_LOBJ_MSGHLPDTAFMT

I5_LOBJ_SNDTYPE

I5_LOBJ_SNDPROC

I5_LOBJ_RCVMOD

I5_LOBJ_PROBLEMID

I5_LOBJ_RQSLVL

I5_LOBJ_RPLDATA1

I5_LOBJ_MSGHLP

I5_LOBJ_DFTRPLY

I5_LOBJ_SNDPGM

I5_LOBJ_RCVTYPE

I5_LOBJ_RCVPROC

I5_LOBJ_RPLYSTS

I5_LOBJ_TXTCCSID

I5_LOBJ_MSG

I5_LOBJ_MSGHLPDTA

I5_LOBJ_SNDNAME

I5_LOBJ_SNDMOD

I5_LOBJ_RCVPROG

I5_LOBJ_MSGFILE

I5_LOBJ_RQSSTS

I5_LOBJ_DATACCSID

Errors

I5_TYPE_CHAR

I5_ERR_OK

I5_ERR_ERROR

I5_ERR_TOOMUCHOPENFILE

I5_ERR_MEMALLOC

Data Retrieval Errors

I5_ERR_INVALIDPTR

I5_ERR_FIELDNOTFOUND

I5_ERR_INVALIDFIELDNBR

I5_ERR_INVALIDKEYLEN

I5_ERR_INVALIDKEYNBR

I5_ERR_NOTENABLETOUPDATE

I5_ERR_INVALIDOPENMODE

I5_ERR_RECORDNOTFOUND

I5_ERR_RECORDLOCKED

I5_ERR_BEOF

I5_ERR_FILELIMITS

I5_ERR_NOTCONNECTED

I5_ERR_INVALIDSEQ

I5_ERR_NORANGESET

I5_ERR_NOLINKDEFINED

I5_ERR_NOCURRENTRECORD

I5_ERR_NULLNOTALLOWED

I5_ERR_BADSESSION

I5_ERR_WRONGLOGIN

I5_ERR_NOTENOUGHRIGHTS

I5_ERR_FIELDNULL

I5_ERR_INVALIDTYPE

I5_ERR_INVALIDINFO

I5_ERR_NOTTYPEPROPERTY

I5_ERR_RECORDCHANGED

I5_ERR_ALLREADYINTRAN

I5_ERR_NOTINTRAN

i5 PHP API Toolkit

97

Function Errors

I5_ERR_PHP_HDLDFT

I5_ERR_PHP_HDLCONN

I5_ERR_PHP_HDLBAD

I5_ERR_PHP_OPTIONSTYPE

I5_ERR_PHP_OPTIONSNUMBER

I5_ERR_PHP_RESOURCE_BAD

I5_ERR_PHP_TYPEPARAM

I5_ERR_PHP_NBPARAM_BAD

I5_ERR_PHP_TYPEGET

I5_ERR_PHP_OPERATOR_BAD

I5_ERR_PHP_BOOKMARK

I5_ERR_PHP_NOT_BOOKMARK

I5_ERR_PHP_CALL_BINDPARAM

I5_ERR_PHP_GETPARAM

I5_ERR_PHP_BINDPARAM

I5_ERR_PHP_PARAM_DESC

I5_ERR_PHP_BLOBSIZE

I5_ERR_PHP_VARIABLE

I5_ERR_PHP_INTERNAL

I5_ERR_PHP_EXECUTE

I5_ERR_PHP_NO_COMMAND

I5_ERR_PHP_EMPTY_ARRAY

I5_ERR_PHP_NO_KEYNAME

I5_ERR_PHP_NO_PARMNAME

I5_ERR_PHP_NO_ZVALUE

I5_ERR_PHP_COMMAND_ERROR

I5_ERR_PHP_DATAREA_READ

I5_ERR_PHP_GET_SYSVAL

I5_ERR_PHP_ELEMENT_MISSING

I5_ERR_PHP_BAD_DEF

I5_ERR_PHP_BAD_KEYNAME

I5_ERR_PHP_NO_DS_VALUE

I5_ERR_PARAMNOTFOUND

I5_ERR_ENDOFOCC

I5_ERR_PHP_BAD_DS_INPUT

I5_ERR_DESC_UNEXP

I5_ERR_DQDESC_UNSUPP

I5_ERR_DESC_WRONG_DATAOP

I5_ERR_INCORRECTVALUE

I5_ERR_PHP_BAD_PROG_NAME

I5_ERR_PHP_AS400_MESSAGE

I5_ERR_PHP_NOT_DTAQ_KEY

I5_ERR_PHP_DTAQ_BADKEY

I5_ERR_PHP_DESC_EMPTY

I5_ERR_PHP_BAD_LEN_PROP

I5_ERR_PHP_LIST_PROP

I5_ERR_PHP_SPOOL_FILE_FOPEN

I5_ERR_PHP_API_LENGTH

Zend Core for i5/OS User Guide

98

Easycom PHP Data Description

Short Data Format

Data structures are defined via PHP as follows:

Main data is an array of key-value pairs, where key is the parameter name and

value is the array of:

 type - one of Data types

 type modifier

• for CHAR, BYTE - integer describing length. Length can be number or

name of the variable holding the length in the data structure.

• for PACKED, ZONED - string "NUMBER.NUMBER" defining length and

precision

• for STRUCT - array containing data definition of the structure

• for INT, FLOAT - ignored

 direction (optional) - one of I/O values

 count (optional)

• if integer - repetition count if the field is an array

• if string - reference to the repetition count field

Example:

<?php

$person = array(

 "name" => array(I5_TYPE_CHAR, 50),

 "age" => array(I5_TYPE_INT, 0),

 "ID" => array(I5_TYPE_BYTE, 10)

);

$data = array(

"person" => array(I5_TYPE_STRUCT, $person),

"last_accesses" => array(I5_TYPE_INT, 0, I5_OUT, 3),

"account_balance" => array(I5_TYPE_PACKED, "10.3", I5_OUT)

);

$prg = i5_program_prepare("MYLIB/PERSONPGM", $data);

?>

In any place data a description is required; the name of the file with external data

structure description can be used instead.

i5 PHP API Toolkit

99

Long Data Format

Data structure is defined via PHP as follows:

Main data is the array of values, having following fields:

 Name - name of the field

 Type - type of the field, can be one of Data types

 Length

• for CHAR, BYTE - integer describing length. Length can be number or

name of the variable holding the length in the data structure.

• for PACKED, ZONED - string "NUMBER.NUMBER" defining length and

precision

• for STRUCT - array containing data definition of the structure

• for INT, FLOAT - ignored

 IO - can be one of I/O values

Data structure is defined via PHP as follows:

 DSName - name of the parameter

 DSParm (optional) - array of the parameter of the Data structure. Each

parameter is defined by a data definition in the same format as described

here.

 Count (optional) - repetition count if the field is an array

 CountRef (optional) - reference to the repetition count if the field is an

array

Zend Core for i5/OS User Guide

100

Example:

<?php

$description = Array(

 array("Name"=>"P1", "IO"=>I5_INOUT,

"Type"=>I5_TYPE_CHAR, "Length"=>"10", "count"=>5),

 array("Name"=>"P2C", "IO"=>I5_INOUT,

"Type"=>I5_TYPE_LONG),

 array("Name"=>"P2", "IO"=>I5_INOUT,

"Type"=>I5_TYPE_CHAR, "Length"=>"1", "countRef"=>"P2C"),

 array("DSName"=>"PS", "count"=>2,

"DSParm"=>array(

 array("Name"=>"PS1",

"IO"=>I5_IN|I5_OUT, "Type"=>I5_TYPE_CHAR, "Length"=>"10"),

 array("Name"=>"PS2",

"IO"=>I5_IN|I5_OUT, "Type"=>I5_TYPE_CHAR, "Length"=>"10"),

 array("Name"=>"PS3",

"IO"=>I5_IN|I5_OUT, "Type"=>I5_TYPE_CHAR, "Length"=>"10"),

)

)

);

$prg = eac_program_prepare("MYLIB/PERSONPGM", $description);

?>

Data Types

I5_TYPE_CHAR

I5_TYPE_PACKED

I5_TYPE_FLOAT

I5_TYPE_STRUCT (long format uses

DSName to define structure)

I5_TYPE_INT

I5_TYPE_ZONED

I5_TYPE_BYTE

 I/O Values

 I5_IN

 I5_OUT

These values can be OR'ed together to get input-output value:

 I5_TYPE_RETVAL - return value for procedure call

 I5_TYPE_BYVAL - by-value parameter for procedure call

 default is input

i5 PHP API Toolkit

101

Error Types

I5_ERR_OK

I5_ERR_TOOMUCHOPENFILE

I5_ERR_INVALIDPTR

I5_ERR_INVALIDFIELDNBR

I5_ERR_INVALIDKEYNBR

I5_ERR_INVALIDOPENMODE

I5_ERR_RECORDLOCKED

I5_ERR_FILELIMITS

I5_ERR_INVALIDSEQ

I5_ERR_NOLINKDEFINED

I5_ERR_NULLNOTALLOWED

I5_ERR_WRONGLOGIN

I5_ERR_FIELDNULL

I5_ERR_INVALIDINFO

I5_ERR_RECORDCHANGED

I5_ERR_NOTINTRAN

I5_ERR_PHP_HDLCONN

I5_ERR_PHP_OPTIONSTYPE

I5_ERR_PHP_RESOURCE_BAD

I5_ERR_PHP_NBPARAM_BAD

I5_ERR_PHP_OPERATOR_BAD

I5_ERR_PHP_NOT_BOOKMARK

I5_ERR_PHP_GETPARAM

I5_ERR_PHP_PARAM_DESC

I5_ERR_PHP_VARIABLE

I5_ERR_PHP_EXECUTE

I5_ERR_PHP_EMPTY_ARRAY

I5_ERR_PHP_NO_PARMNAME

I5_ERR_PHP_COMMAND_ERROR

I5_ERR_PHP_GET_SYSVAL

I5_ERR_PHP_BAD_DEF

I5_ERR_PHP_NO_DS_VALUE

I5_ERR_ENDOFOCC

I5_ERR_DESC_UNEXP

I5_ERR_DESC_WRONG_DATAOP

I5_ERR_PHP_BAD_PROG_NAME

I5_ERR_ERROR

I5_ERR_MEMALLOC

I5_ERR_FIELDNOTFOUND

I5_ERR_INVALIDKEYLEN

I5_ERR_NOTENABLETOUPDATE

I5_ERR_RECORDNOTFOUND

I5_ERR_BEOF

I5_ERR_NOTCONNECTED

I5_ERR_NORANGESET

I5_ERR_NOCURRENTRECORD

I5_ERR_BADSESSION

I5_ERR_NOTENOUGHRIGHTS

I5_ERR_INVALIDTYPE

I5_ERR_NOTTYPEPROPERTY

I5_ERR_ALLREADYINTRAN

I5_ERR_PHP_HDLDFT

I5_ERR_PHP_HDLBAD

I5_ERR_PHP_OPTIONSNUMBER

I5_ERR_PHP_TYPEPARAM

I5_ERR_PHP_TYPEGET

I5_ERR_PHP_BOOKMARK

I5_ERR_PHP_CALL_BINDPARAM

I5_ERR_PHP_BINDPARAM

I5_ERR_PHP_BLOBSIZE

I5_ERR_PHP_INTERNAL

I5_ERR_PHP_NO_COMMAND

I5_ERR_PHP_NO_KEYNAME

I5_ERR_PHP_NO_ZVALUE

I5_ERR_PHP_DATAREA_READ

I5_ERR_PHP_ELEMENT_MISSING

I5_ERR_PHP_BAD_KEYNAME

I5_ERR_PARAMNOTFOUND

I5_ERR_PHP_BAD_DS_INPUT

I5_ERR_DQDESC_UNSUPP

I5_ERR_INCORRECTVALUE

I5_ERR_PHP_AS400_MESSAGE

Zend Core for i5/OS User Guide

102

I5_ERR_PHP_NOT_DTAQ_KEY

I5_ERR_PHP_DESC_EMPTY

I5_ERR_PHP_LIST_PROP

I5_ERR_PHP_API_LENGTH

I5_ERR_PHP_DTAQ_BADKEY

I5_ERR_PHP_BAD_LEN_PROP

I5_ERR_PHP_SPOOL_FILE_FOPEN

Program Samples

i5 Program Call

The i5 program call process contains the following PHP functions:

 i5_connect

 i5_program_prepare

 i5_program_call

 i5_close

The sample PHP script below invokes an i5 program:

<?php

$conn = i5_connect($i5_server_ip, $i5_uname, $i5_pass);

if ($conn === false)

{

 print ("FAIL : Failed to connect to server : $i5_server_ip, with

user name : $i5_uname and password : $i5_pass
\n");

 $errorTab = i5_error();

 var_dump($errorTab);

 die();

}

/* Prepare File for execution */

$desc = array (

array ("name"=>"code", "io"=>I5_INOUT, "type" => I5_TYPE_CHAR,

"length"=> "10"),

array ("name"=>"name", "io"=>I5_INOUT, "type" => I5_TYPE_CHAR,

"length"=> "10"),

);

$prog = i5_program_prepare("EACDEMO/TESTSTP2", $desc);

if ($prog === FALSE)

{

 $errorTab = i5_error();

 echo "Program prepare failed
\n";

 var_dump($errorTab);

 die();

i5 PHP API Toolkit

103

}

/* Execute Program */

$params = array ("code"=>" ","name"=>" ");

$retvals = array("code"=>"code","name"=>"name");

$ret = i5_program_call($prog, $params, $retvals) ;

echo "The return values are:
", "Name: ", $name, "
 Code: ",

$code, "
";

if ($ret === FALSE)

{

 $errorTab = i5_error();

 echo "FAIL : i5_program_call failure code
";

 var_dump($errorTab);

 die();

}

$close_val = i5_program_close ($prog);

if ($close_val === false)

{

 print ("FAIL : i5_program_close returned fales, closing an open

prog.
\n");

 $errorTab = i5_error();

 var_dump($errorTab);

}

i5_close($conn) || print ("FAIL : Failed to disconnect from server

:$i5_server_ip");

?>

Zend Core for i5/OS User Guide

104

Service Program

<?php

// This program calls a service program (*SRVPGM), which was created

using the following i5/OS commands:

// CRTRPGMOD SRCFILE(EACDEMO/QRPGLESRC) SRCMBR(TESTMOD)

// CRTSRVPGM SRVPGM(EACDEMO/TESTSTRUC2) MODULE(EACDEMO/TESTMOD)

EXPORT(*ALL)

$Hdlcon = i5_connect($connect, $user, $pass, array(I5_OPTIONS_JOBNAME

=> "PHPAIX"));

if (is_bool($Hdlcon) && $Hdlcon == FALSE)

die(i5_errormsg());

echo "Connected!
";

$desc = array (

array ("name"=>"code", "io"=>I5_INOUT, "type" => I5_TYPE_CHAR,

"length"=> "10"),

array ("name"=>"name", "io"=>I5_INOUT, "type" => I5_TYPE_CHAR,

"length"=> "10"),

);

$ret = $prog = i5_program_prepare("EACDEMO/TESTP2SRV(TESTSTMOD)",

$desc);

if (!$ret){

getError(I5_ERR_OK, -1);

} else {

echo "1. Prepare - It works!
";

}

$hdlPgm = $ret;

$parameter = array("code"=>" ", "name"=>" ");

$parmOut = array("code"=>"code", "name"=>"name");

$ret = i5_program_call($hdlPgm, $parameter, $parmOut);

if (!$ret){

getError(I5_ERR_OK, -1);

} else {

echo "2. Call - It works!
";

}

echo "code : $code
 name : $name
";

?>

i5 PHP API Toolkit

105

Data Retrieval

<?php

$Hdlcon = i5_connect($connect, $user, $pass);

if (!$Hdlcon) {

die(i5_errormsg());

}

$HdlFile = i5_open("eacdemo/sp_cust", I5_OPEN_READWRITE, $Hdlcon);

if (!is_bool($HdlFile))

{

echo "It works
\n";

}

$fealds = i5_list_fields($HdlFile);

$fetch_array = i5_fetch_array($HdlFile,I5_READ_FIRST);

$fetch_assoc = i5_fetch_assoc($HdlFile,I5_READ_NEXT);

$fetch_object = i5_fetch_object($HdlFile,I5_READ_PREV);

$fetch_row = i5_fetch_row($HdlFile,I5_READ_LAST);

print_r($fetch_array); echo"
\n
\n";

print_r($fetch_assoc); echo"
\n
\n";

print_r($fetch_object); echo"
\n
\n";

print_r($fetch_row); echo"
\n
\n";

$info = i5_info($HdlFile,1);

print_r($info); echo"
\n
\n";

$field_length = i5_field_len($HdlFile,1);

$field_name = i5_field_name($HdlFile,1);

$field_type = i5_field_type($HdlFile,1);

$field_scale = i5_field_scale($HdlFile,1);

echo "Field Name: {$field_name}
\n Field Lenght: {$field_length}

\n Field Type: {$field_type}
\n Field Scale:

{$field_scale}
\n";

$list_fields = i5_list_fields($HdlFile);

print_r($list_fields);

$num_fields = i5_num_fields($HdlFile);

echo "
\n {$num_fields}";

$result = i5_result($HdlFile,2);

echo "
\n {$result}";

i5_close($Hdlcon);

?>

Zend Core for i5/OS User Guide

106

Native File Access sample

<?php

$conn = i5_connect($connect, $user, $pass);

if ($conn === false) die(i5_errormsg());

$file = i5_open("EACDEMO/SP_CUST", I5_OPEN_READWRITE, $conn);

if ($file === false) die(i5_errormsg());

i5_addnew($file);

i5_setvalue($file,array('11111', 'Kauai', 'Erica', 'Norm', '4-976

Hwy', 'Suite 103', 'Kapaa', 'HI', '94766', 'US', '808-555', '808-

555'));

i5_update($file);

i5_edit($file);

i5_delete($file);

i5_cancel_edit($file);

$tabf = array(1500);

i5_range_from($file, FALSE, $tabf);

$tabf = array(1600);

i5_range_to($file, FALSE, $tabf);

$fetch = i5_fetch_row($file, I5_READ_FIRST);

echo $fetch[0], " ",$fetch[1], " ", $fetch[2], "
";

$fetch = i5_fetch_row($file, I5_READ_NEXT);

echo $fetch[0], " ",$fetch[1], " ", $fetch[2], "
";

i5_range_clear($file);

$fetch = i5_fetch_row($file, I5_READ_FIRST);

echo $fetch[0], " ",$fetch[1], " ", $fetch[2], "

";

i5_data_seek($file, 2);

$rowTab = i5_fetch_row($file);

echo $rowTab[0], " ",$rowTab[1], " ", $rowTab[2], "
";

$tab=array(1510);

$seek = i5_seek($file, "=", $tab);

$rowTab = i5_fetch_row($file);

echo $rowTab[0], " ",$rowTab[1], " ", $rowTab[2], "
";

$id = i5_bookmark($file);

echo $id, "
";

i5_new_record($file, array('1229', 'Kauai Dive Shoppe ', 'Irica',

'Norman', '4-976 Sugarloaf Hwy', 'Suite 103', 'Kapaa Kauai', 'HI',

'94766-1234', 'US', '808-555-0269', '808-555-0278'));

i5_fetch_row($file,I5_READ_FIRST);

i5_update_record($file,array("FIRSTNAME"=>"Lina","LASTNAME"=>"Karasko

"));

i5 PHP API Toolkit

107

i5_delete_record($file);

$keys = i5_get_keys($file);

echo $keys;

i5_free_file($file);

?>

Data Queues

Data Queue Without Key

<?php

$conn = i5_connect($i5_server_ip, $i5_uname, $i5_pass);

if (!$conn) {

 die(i5_errormsg());

}

$description = array("Name"=>"DATA", "Type"=>I5_TYPE_CHAR,

"Length"=>"50");

$queue = i5_dtaq_prepare("eacdemo/DTAQ_FIFO", $description);

$ret = i5_dtaq_send($queue,"","the dataqueue test data");

var_dump($ret); echo "
\n";

if(!$ret) var_dump(i5_error());

$ret = i5_dtaq_receive($queue);

var_dump($ret);

i5_dtaq_close($queue);

i5_close($conn);

?>

Zend Core for i5/OS User Guide

108

Data Queue With key

<?php

$conn = i5_connect($i5_server_ip, $i5_uname, $i5_pass);

if (!$conn) {

 die(i5_errormsg());

}

$descriptionC = array("DSName"=>"PS", "DSParm"=>array(

array("Name"=>"PS1", "Type"=>I5_TYPE_CHAR, "Length"=>"10"),

array("Name"=>"PS2", "Type"=>I5_TYPE_PACKED, "Length"=>"10.4"),

array("Name"=>"PS3", "Type"=>I5_TYPE_CHAR, "Length"=>"10")

)

);

$dtaqHdl_KEY = i5_dtaq_prepare("EACDEMO/DTAQ_KEY", $descriptionC,10);

var_dump($dtaqHdl_KEY); echo "
\n";

$parameter = array("PS1"=>"test1", "PS2"=>13.1415, "PS3"=>"test2");

$key = "abcd";

$ret = i5_dtaq_send($dtaqHdl_KEY, $key, $parameter);

var_dump($ret); echo "
\n";

$ret = i5_dtaq_receive($dtaqHdl_KEY, "EQ", $key);

var_dump($ret);

i5_dtaq_close($dtaqHdl_KEY);

i5_close($conn);

?>

System Values

<?php

$conn = i5_connect($i5_server_ip, $i5_uname, $i5_pass);

print "Date is: ".i5_get_system_value("QDATE");

i5_close($conn);

?>

i5 PHP API Toolkit

109

User Spaces

<?php

$conn = i5_connect($connect, $user, $pass);

if (!$Hdlcon) {

die(i5_errormsg());

}

$property = array(

I5_INITSIZE=>10,

I5_DESCRIPTION=>"Created by PHP",

I5_INIT_VALUE=>"A",

I5_EXTEND_ATTRIBUT=>"File",

I5_AUTHORITY=>"*ALL",

I5_LIBNAME=>"EACDEMO",

I5_NAME=>"USERSPACE"

);

$ret = i5_userspace_create($property);

if ($ret) echo "1. It works!
\n";

$description = Array(

array("Name"=>"filler0", "IO"=>I5_INOUT, "Type"=>I5_TYPE_CHAR,

"Length"=>"64"),

array("Name"=>"generic", "IO"=>I5_INOUT, "Type"=>I5_TYPE_LONG),

array("Name"=>"filler", "IO"=>I5_INOUT, "Type"=>I5_TYPE_CHAR,

"Length"=>"36"),

array("Name"=>"outputsize", "IO"=>I5_INOUT, "Type"=>I5_TYPE_LONG),

array("Name"=>"offsetInput", "IO"=>I5_INOUT, "Type"=>I5_TYPE_LONG)

);

$parameter = Array(

"filler0"=>"AAAA",

"generic"=>10,

"filler"=>"BBB",

"outputsize"=>100,

"offsetInput"=> 0

);

$parmOut = array("filler0"=>"filler0", "filler"=>"filler",

"generic"=>"generic", "outputsize"=>"outputsize",

"offsetInput"=>"offsetInput");

Zend Core for i5/OS User Guide

110

$UspcHdlBad = i5_userspace_prepare("EACDEMO/USERSPACE",

$description);

if ($UspcHdlBad) echo "2. It works!
\n";

$ret = i5_userspace_put($UspcHdlBad, $parameter);

if ($ret) echo "3. It works!
\n";

$ret = i5_userspace_get($UspcHdl, $parmOut);

if (!$ret) echo "4. It works!
\n";

if ($ret) echo "5. It works!";

var_dump($ret);*/

$ret = i5_command("DLTUSRSPC USRSPC(EACDEMO/USERSPACE)");

if ($ret) echo "6. It works!";

i5_close($conn);

?>

Active Job List

<?php

$Hdlcon = i5_connect($connect, $user, $pass, array(I5_OPTIONS_JOBNAME

=> "PHPAIX"));

if (is_bool($Hdlcon) && $Hdlcon == FALSE){

die(i5_errormsg());}

echo "i5_job_list: ";

$ret = i5_job_list();

if (!$ret)

die(i5_errormsg());

else

echo "It works!
";

$listHdl = $ret;

echo 'i5_job_list_read: ';

$ret = i5_job_list_read($listHdl);

if (!$ret)

die(i5_errormsg());

 else

echo "It works!
";

echo 'i5_job_list_close: ';

$ret = i5_job_list_close($listHdl);

if (!$ret) {

die(i5_errormsg());

i5 PHP API Toolkit

111

} else {

echo "It works!
";

}

$listHdl = i5_job_list(array(I5_JOBNAME=>"*ALL", I5_JOBTYPE=>"S"));

if (is_bool($listHdl))

die(i5_errormsg());

else

echo "List
";

$a= 0;

$ret = true;

while($ret && $a < 3){

echo "<p>Message $a
";

$ret = i5_job_list_read($listHdl);

$a ++;

if (is_bool($ret))

die(i5_errormsg());

else

{

print_r($ret);echo "<p>";

echo "Job queue Name : " . $ret[I5_JOB_QUEUE_NAME] . ", Response Id :

" . $ret[I5_JOB_PROCESS_ID] . "
";

echo "I5_JOB_JOBMSGQFL : " . $ret[I5_JOB_JOBMSGQFL] . "
";

}

}

$ret = i5_job_list_close($listHdl);

?>

Zend Core for i5/OS User Guide

112

Job Log List

<?php

$Hdlcon = i5_connect($connect, $user, $pass, array(I5_OPTIONS_JOBNAME

=> "PHPAIX"));

if (is_bool($Hdlcon) && $Hdlcon == FALSE){

die(i5_errormsg());}

$listHdl = i5_jobLog_list();

if (is_bool($listHdl))

die(i5_errormsg());

 else

echo "List
";

$a= 0;

$ret = true;

while($ret && $a < 2){

echo "Message $a
";

$ret = i5_jobLog_list_read($listHdl);

$a ++;

if (is_bool($ret))

die(i5_errormsg());

else

{

print_r($ret);echo "<p>";

echo "Message : " . $ret[I5_LOBJ_MSG]. ",
 data : ".

$ret[I5_LOBJ_MSGDTA] . "
";

}

}

$ret = i5_jobLog_list_close($listHdl);

if (is_bool($ret))

die(i5_errormsg());

 else {

print_r($ret);echo "<p>";

echo "Message : " . $ret[I5_LOBJ_MSG]. ",
 data : ".

$ret[I5_LOBJ_MSGDTA] . "
";

?>

i5 PHP API Toolkit

113

Data Areas

<?php

$Hdlcon = i5_connect($connect, $user, $pass);

if (!$Hdlcon) {

die(i5_errormsg());

}

$ret = i5_data_area_create("eacdemo/MYDTA", "50");

if ($ret) echo "1.It works!
";

$ret = i5_data_area_write("eacdemo/MYDTA", "coucou");

if ($ret) echo "3.It works!
";

$ret = i5_data_area_read("eacdemo/MYDTA", 2, 4);

if ($ret) echo "4.It works!: ", $ret, "
";

$ret = i5_data_area_read("eacdemo/MYDTA");

if ($ret) echo "5.It works!: ", $ret, "
";

$ret = i5_data_area_write("eacdemo/MYDTA", "lina", 5, 45);

if ($ret) echo "6.It works!
";

$ret = i5_data_area_read("eacdemo/MYDTA", 1, 5);

if ($ret) echo "7.It works!: ", $ret, "
";

$ret = i5_data_area_read("eacdemo/MYDTA");

if ($ret) echo "8.It works!: ", $ret, "
";

$ret = i5_data_area_delete("eacdemo/MYDTA");

if ($ret) echo "9.It works!
";

?>

Zend Core for i5/OS User Guide

114

Spooled Files

<?php

$conn = i5_connect($connect, $user, $pass);

if (!$conn) die("
Connect fail");

echo "
================
";

echo "
connected.";

$spool = i5_spool_list(array("username"=>"lina"),$conn);

if ($spool)

{

$count = 0;

while (($a = i5_spool_list_read($spool)) && ($count <= 2))

{

 echo "
================
";

 var_dump($a);

 echo "
data {$count}:
";

 $data = i5_spool_get_data($a['SPLFNAME'], $a['JOBNAME'],

 $a['USERNAME'], $a['JOBNBR'],

 $a['SPLFNBR']);

 if (is_bool($data)) var_dump(i5_error());

 var_dump($data);

 $count++;

 }

 i5_spool_list_close($spool);

}

else echo "No spool today.";

i5_close($conn);

XII. Object Listing

$conn = i5_connect($connect, $user, $pass);

if (!$conn) die("
Connect fail");

echo "
================
";

echo "
connected.
";

$objects = i5_objects_list("EACDEMO", "*ALL", "*PGM");

if ($objects) echo "1.It works!
";

$HdlObj = $objects;

$objects = i5_objects_list_read($HdlObj);

if (!is_bool($objects))

{

 echo "2.It works!
";

i5 PHP API Toolkit

115

 print_r($objects); echo "
";

}

$continue = true;

$count = 0;

while($continue)

{

$objects = i5_objects_list_read($HdlObj);

if (is_bool($objects) && $objects == FALSE)

$continue = false;

else

{

 echo "3.It works!
";

 print_r($objects); echo "
";

}

$count ++;

if ($count == 2) break;

}

$objects = i5_objects_list_close($HdlObj);

if (is_bool($objects) && $objects == FALSE)

 $continue = false;

else

 echo "4.It works!
";

?>

Zend Core for i5/OS User Guide

116

PCML Program Call – PCML Description Used in the PHP
program

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Program call example using PCML</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1">

<link href="style.css" rel="stylesheet" type="text/css">

<link rel="shortcut icon" type="image/x-icon" href="favicon.ico">

</head>

<body>

<?php

include("conn.php");

/* connection step */

$Hdlcon = i5_connect($connect,$user, $pass,

array(I5_OPTIONS_JOBNAME=>"I5JOB"));

// This is the PCML taken from the following i5/OS command:

// CRTRPGMOD SRCFILE(EACDEMO/QRPGLESRC) SRCMBR(TESTSTRUC)

 PGMINFO(*PCML) INFOSTMF('/tmp/teststruc.pcml')

// we only defined some parameters as "output" to have minimal

network load

// we also changed the program name tag to specify the "path" value

for the program

// we also replace " with \" to have a correct PHP syntax. We also

could load it from the IFS.

$description = "<pcml version=\"4.0\">

 <!-- RPG module: TESTSTRUC -->

 <!-- created: 2006-10-12-11.46.56 -->

 <!-- source: EACDEMO/QRPGLESRC(TESTSTRUC) -->

 <!-- 5 -->

 <struct name=\"S2\">

i5 PHP API Toolkit

117

 <data name=\"ZOND2\" type=\"zoned\" length=\"10\"

precision=\"5\" usage=\"inherit\" />

 <data name=\"PACK2\" type=\"packed\" length=\"19\"

precision=\"5\" usage=\"inherit\" />

 <data name=\"PACK3\" type=\"packed\" length=\"19\"

precision=\"5\" usage=\"inherit\" />

 <data name=\"ALPH2\" type=\"char\" length=\"20\"

usage=\"inherit\" />

 </struct>

 <!-- 1 -->

 <struct name=\"S1\">

 <data name=\"ZOND\" type=\"zoned\" length=\"10\"

precision=\"5\" usage=\"inherit\" />

 <data name=\"PACK1\" type=\"packed\" length=\"19\"

precision=\"5\" usage=\"inherit\" />

 <data name=\"ALPH1\" type=\"char\" length=\"10\"

usage=\"inherit\" />

 </struct>

 <program name=\"TESTSTRUC\"

path=\"/QSYS.LIB/EACDEMO.LIB/TESTSTRUC.PGM\">

 <data name=\"CODE\" type=\"char\" length=\"10\"

usage=\"output\" />

 <data name=\"S1\" type=\"struct\" struct=\"S1\"

usage=\"inputoutput\" />

 <data name=\"S2\" type=\"struct\" struct=\"S2\"

usage=\"inputoutput\" />

 <data name=\"PACK\" type=\"packed\" length=\"1\"

precision=\"1\" usage=\"output\" />

 <data name=\"CH10\" type=\"char\" length=\"19\"

usage=\"output\" />

 <data name=\"CH11\" type=\"char\" length=\"20\"

usage=\"output\" />

 <data name=\"CH12\" type=\"char\" length=\"29\"

usage=\"output\" />

Zend Core for i5/OS User Guide

118

 <data name=\"CH13\" type=\"char\" length=\"33\"

usage=\"output\" />

 </program>

</pcml>

 ";

// define some input values

$pack3value=7789777.44;

$alph2value=4;

// now, prepare the program (only pcml parsing at this stage)

($hdlPgm = i5_program_prepare_PCML($description))

or trigger_error("Error while parsing PCML: " . i5_errormsg(),

E_USER_ERROR);

// let's define some input values

$in_parameters = Array(

"S1"=>Array("ZOND"=>54.77, "PACK1"=>16.2, "ALPH1"=>"MyValue"),

"S2"=>Array("ZOND2"=>44.66, "PACK2"=>24444.99945,

"PACK3"=>$pack3value, "ALPH2"=>$alph2value)

);

// now we need to define where to place output values; it will create

new local variables

$out_parameters = array(

"S1"=>"S1_Value", "S2"=>"S2_Value",

"CH10"=>"CH10_Value", "CH11"=>"CH11_Value", "CH12"=>"CH12_Value",

"CH13"=>"CH13_Value",

"CODE"=>"Code_Value", "PACK"=>"Pack"

);

// the call is made here

i5_program_call($hdlPgm, $in_parameters, $out_parameters)

or trigger_error("Error while executing program: " . i5_errormsg(),

E_USER_ERROR);

// all variables are now filled with program results.

echo "
S1:"; var_dump($S1_Value);

echo "
S2:"; var_dump($S2_Value);

echo "
CH10:"; var_dump($CH10_Value);

echo "
CH11:"; var_dump($CH11_Value);

echo "
CH12:"; var_dump($CH12_Value);

echo "
CH13:"; var_dump($CH13_Value);

i5 PHP API Toolkit

119

echo "
Code:"; var_dump($Code_Value);

echo "
Pack:"; var_dump($Pack);

?>

</body>

</html>

PCML Program Call 2 – PCML File External to PHP Program

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Program call example using PCML</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1">

<link href="style.css" rel="stylesheet" type="text/css">

<link rel="shortcut icon" type="image/x-icon" href="favicon.ico">

</head>

<body>

<?php

include("conn.php");

/* connection step */

$Hdlcon = i5_connect($connect,$user, $pass,

array(I5_OPTIONS_JOBNAME=>"I5JOB"));

// This is the PCML taken from the following i5/OS command:

// CRTRPGMOD SRCFILE(EACDEMO/QRPGLESRC) SRCMBR(TESTSTRUC)

 PGMINFO(*PCML) INFOSTMF('/tmp/teststruc.pcml')

// we only defined some parameters as "output" to have minimal

network load

// we also changed the program name tag to specify the "path" value

for the program

// we also replace " with \" to have a correct PHP syntax. We also

could load it from the IFS.

// the PCML file is located in the same location as the PHP program

($description =

file_get_contents("/www/zendcore/htdocs/teststruc.pcml"))

or trigger_error("Error while opening PCML file", E_USER_ERROR);

// define some input values

$pack3value=7789777.44;

$alph2value=4;

Zend Core for i5/OS User Guide

120

// now, prepare the program (only pcml parsing at this stage)

($hdlPgm = i5_program_prepare_PCML($description))

 or trigger_error("Error while parsing PCML: " . i5_errormsg(),

E_USER_ERROR);

// let's define some input values

$in_parameters = Array(

"S1"=>Array("ZOND"=>54.77, "PACK1"=>16.2, "ALPH1"=>"MyValue"),

"S2"=>Array("ZOND2"=>44.66, "PACK2"=>24444.99945,

"PACK3"=>$pack3value, "ALPH2"=>$alph2value)

);

// now we need to define where to place output values; it will create

new local variables

$out_parameters = array(

"S1"=>"S1_Value", "S2"=>"S2_Value",

"CH10"=>"CH10_Value", "CH11"=>"CH11_Value", "CH12"=>"CH12_Value",

"CH13"=>"CH13_Value",

"CODE"=>"Code_Value", "PACK"=>"Pack"

);

// the call is made here

i5_program_call($hdlPgm, $in_parameters, $out_parameters)

or trigger_error("Error while executing program: " . i5_errormsg(),

E_USER_ERROR);

// all variables are now filled with program results.

echo "
S1:"; var_dump($S1_Value);

echo "
S2:"; var_dump($S2_Value);

echo "
CH10:"; var_dump($CH10_Value);

echo "
CH11:"; var_dump($CH11_Value);

echo "
CH12:"; var_dump($CH12_Value);

echo "
CH13:"; var_dump($CH13_Value);

echo "
Code:"; var_dump($Code_Value);

echo "
Pack:"; var_dump($Pack);

?>

</body>

</html>

i5 PHP API Toolkit

121

List of an RPG Program, "TESTSTRUC", Called by the PCML
sample programs

D S1 DS

 D ZOND 1 10S 5

 D pack1 11 20P 5

 D alph1 21 30

 D S2 DS

 D ZOND2 1 10S 5

 D pack2 11 20P 5

 D pack3 21 30P 5

 D alph2 31 50

 D SDS

 D $PGM 1 10

 D $LIB 81 90

 D $JOB 244 253

 D $USER 254 263

 D $JOBNM 264 269

 D INFDS DS

 D KEY 369 369

 D PAGRRN 378 379B 0

 D*

 D F03 C CONST(X'33')

 C*--

 C *ENTRY PLIST

 C PARM CODE 10

 C PARM S1

 C PARM S2

 C PARM PACK 1

1

 C PARM ch10 19

 C PARM ch11 20

 C PARM ch12 29

 C PARM ch13 33

 C MOVEL 'HELLO' CODE

 C Z-SUB 0.5 PACK

 C eval ch10 = *all'A'

 C eval ch11 = *all'B'

Zend Core for i5/OS User Guide

122

 C eval ch12 = *all'ZX'

 C eval ch13 = *all'5'

 C eval ZOND = 0 - zond

 C eval pack1 = 0 - pack1

 C eval alph1 ='alph1'

 C – service side eval ZOND2 = 0 - zond2

 C eval pack2 = 0-pack2

 C eval pack3 =0 - pack3

 C eval alph2 ='alph2'

 C*

 C SETON

 LR

 C RETURN

Web Services

<?php

/*

This service invokes a RPG program with two parameters

*/

class i5_program_service {

private $conn = false;

function __construct() {

 $this->conn = i5_connect('127.0.0.1', 'user', 'password'/*,

$connection_parameters*/);

 if (!is_resource($this->conn)) {

 throw new SoapFault('i5_program_service', 'Connection to i5

server failed, use i5_errormsg() to get the failure reason');

 }

}

public function service_for_i5_program($var_0, $var_1) {

 $description = Array (

 array ('Name' => 'code', 'IO' => I5_INOUT, 'Type' =>

I5_TYPE_CHAR, 'Length' => '10'),

 array ('Name' => 'name', 'IO' => I5_INOUT, 'Type' =>

I5_TYPE_CHAR, 'Length' => '10'));

i5 PHP API Toolkit

123

 $prog = i5_program_prepare('eacdemo/teststp2', $description,

$this->conn);

 if (is_resource($prog)) {

 /* Execute Program */

 $params = array (

 'code' => $var_0, 'name' => $var_1);

 $retvals = array(

 'code' => 'ret_val_1', 'name' => 'ret_val_2');

 $ret = i5_program_call($prog, $params, $retvals) ;

 if ($ret === true) {

 $ret = array($ret_val_1, $ret_val_2);

 return $ret;

 }

 else {

 throw new SoapFault('i5_program_service', 'Failed to

call the program, use i5_errormsg() to get the failure reason');

 }

 if (!i5_program_close ($prog)) {

 throw new SoapFault('i5_program_service', 'Failed to

free program resource handle, use i5_errormsg() to get the failure

reason');

 }

 }

 else {

 throw new SoapFault('i5_program_service', 'Program

prepare failed, use i5_errormsg() to get the failure reason');

 }

}

 function __destruct() {

 if (!i5_close($this->conn)) {

 // Failed to disconnect from i5 server, use i5_errormsg()

to get the failure reason

 }

 }

}

Zend Core for i5/OS User Guide

124

ini_set('soap.wsdl_cache_enabled', '0');

$server = new SoapServer('zend.wsdl');

$server->setClass('i5_program_service');

$server->handle();

?>

Web Services – Client side

<?php

/*

This client calls the above service using ‘zend.wsdl’ XML file

generated by the WSDL Wizard in the Zend Studio.

/*

ini_set('soap.wsdl_cache_enabled', '0');

$my_client = new SoapClient('zend.wsdl');

try{

var_dump($my_client->service_for_i5_program('111', ' '));

} catch (SoapFault $exception) {

 echo $exception;

 }

?

Technical Support

125

Technical Support

Online Help

Online Help is available from every page within the Zend Core Web Administration

GUI by clicking the Help icon located at the top-right corner of the

screen.

Comments and suggestions are always welcome. To make suggestions on the

Help, contact Zend’s documentation department directly by sending an e-mail to

documentation@zend.com. In addition, at the bottom of each Online Help page is

a link for sending e-mails directly to the Zend Documentation Team.

Support Services

Zend's Support Center (http://www.zend.com/support) provides professional

support and resources for Zend’s solutions:

 Helpdesk - Submit a Helpdesk Ticket for assistance from the Zend Support

Team, and get in touch with expert Zend engineers, ready to provide

professional support with the highest priority and personal attention.

 Resources - Access a wealth of support information including

Knowledgebase Articles and Frequently Asked Questions.

Consulting Services

Zend offers an array of Consulting Service Solutions to support the development

and deployment of your business-critical PHP applications.

To find out more, please visit http://www.zend.com/en/services/consulting.

Education Services

Zend offers a variety of PHP Education Solutions including Certification and

Training Courses, delivered online and through approved Training Partners.

http://www.zend.com/en/services/consulting

Zend Core for i5/OS User Guide

126

Additional Zend Products and Services

Zend Technologies provide a complete lifecycle solution to develop, deploy and

manage your business-critical PHP applications. Zend delivers the premier Web

application platform, services and solutions for PHP applications running on Linux,

UNIX, Windows and Macintosh systems.

Rapid Development & Deployment

Zend delivers an award-winning solution for organizations developing and

deploying business-critical PHP applications. Starting with Zend Studio IDE,

developers have the only PHP IDE (Integrated Development Environment) that

encompasses all the development components necessary for the full PHP

application lifecycle. Zend Platform then provides intelligence for the run-time

aspects of the PHP application under development. A powerful integration

between Zend Studio IDE and Zend Platform allows development and test teams

to thoroughly check that code is free of run-time errors and potential

performance bottlenecks before deployment.

In deployment, copyright protection and performance are key. Zend Guard

secures your application from infringement by encoding and obfuscating the PHP

code so you can maintain your intellectual property investment. Zend Platform

provides maximum performance by accelerating your running PHP applications

with four modules: Content Caching, File Compression, Code Acceleration and

Download Serving. Requiring no code intervention, the modules typically increase

execution speed by x3 – x100.

Zend’s development and deployment solutions bring together your Development,

QA, Production and IT teams. These will let you gain complete insight into your

PHP applications with interactive alerting and XML-based messaging for

integration with other tracking and support tools.

Reduced Testing Cycles

Zend provides the industry’s only integrated IDE and run-time testing solution

that reduces testing cycles by quickly identifying problems early in the lifecycle.

Zend Studio and Zend Platform provide an integrated solution that can be

deployed in development and testing environments to quickly identify run-time

errors/anomalies and performance problems in PHP applications and database

queries. Detailed reporting pinpoints the cause and provides the environmental

data that contributed to each problem, eliminating the need to reproduce each

error. Detailed reports can be shared between QA and development to speed up

Additional Zend Products and Services

127

the fixing process. In addition, alerts can be generated in both email and XML

formats for integration with bug tracking systems.

Zend’s testing cycle solution speeds up development and QA through early

identification of run-time problems and with a level of detailed reporting required

to fix bugs quickly and efficiently.

Central Monitoring and Management

Zend Platform provides the only PHP monitoring and management solution that

actively reports run-time errors/anomalies on a deployed application. At a glance,

Zend Platform provides an instant health status of your PHP servers and

applications along with detailed reporting (with filtering) on a wide variety of

application issues. Zend Platform can be configured to proactively alert you about

the most critical of problems through email or XML-based messaging. Zend

Platform also provides centralized management of your PHP configuration,

ensuring that all PHP settings are configured correctly and consistently across

groups of servers.

Improved Mean-Time-Between-Unscheduled-Interruption (MTBUI)

Zend’s integrated solutions improve your application’s MTBUI in several ways.

Zend Platform actively monitors each production server, proactively alerting you

to problems immediately. Detailed reporting pinpoints each problem with

comprehensive information so that IT and development teams can immediately

get to work on fixing the problem rather than trying to recreate it. Integration

with Zend Studio provides instant access to source code, debugging and profiling

information so that your teams can focus on eliminating the problem rather than

spending time trying to gather information about the cause of the problem.

Proven Scalability

Zend’s award-winning performance solution provides peace-of-mind about the

scalability of your PHP application. Zend Platform’s performance modules

automatically improve the performance of each PHP application, enhancing the

overall user experience and allowing you to serve more users without investing in

new hardware.

Seamless Interoperability

Zend’s solutions provide interoperability with other existing legacy or backend

applications. Zend Platform provides seamless PHP/Java interoperability without

the overhead of continual JVM (Java Virtual Machine) instantiation. The PHP/Java

Bridge provides direct calls to Java code using natural coding syntax. The run-

Zend Core for i5/OS User Guide

128

time engine instantiates a persistent JVM once, providing minimal overhead and

the performance necessary for composite PHP/Java applications.

Active Community/Support

Zend actively participates in the PHP community and provides Training,

Consulting and Support. Zend’s PHP Training Courses range from beginner and

intermediate to advanced levels. The courses are live and take place within an

online class environment, where students communicate and interact with the

instructors in real-time. All of our instructors are Zend Certified PHP Experts,

experienced in providing a professional and in-depth training experience. Zend

also offers an array of Consulting Services to support the successful development

and deployment of your business-critical PHP application projects.

Appendixes

129

Appendixes

Appendix A - Support Tool Information
The following information will be collected by the Zend Support Tool:

 access_log

 df.out

 error_log

 Files

 httpd.conf

 httpd.conf.orig

 httpd.pid

 httpd-autoindex.conf

 httpd-dav.conf

 httpd-default.conf

 httpd-info.con

 httpd-languages.conf

 httpd-manual.conf

 httpd-mpm.conf

 http-multilang-errordoc.conf

 http-ssl.conf

 http-userdir.conf

 http-vhosts.conf

 ls-lR.out

 magic

 mime types

 php.ini

 php_error_log

 ps.out

 registry.xml

 uname.out

Zend Core for i5/OS User Guide

130

Appendix B - PHP Configuration Information
The following PHP Configuration options are included in the Core version 2.5

installation packages:

Categories:

Data Handling

Error Handling and Logging

File Uploads

Fopen Wrappers

Language Options

- Colors for Syntax Highlighting mode

- Safe Mode

Mail

Misc

Paths and Directories

Resource Limits

Data

Handling

always_populate_raw

_post_data

Always populate the

$HTTP_RAW_POST_DATA variable.

 arg_separator.input List of separator(s) used by php to

parse input URLs into variables.

Every character in this directive is

considered as a separator.

 arg_separator.output The separator used in php generated

URLs to separate arguments.

 auto_append_file Optionally defines the name of a file

that is automatically parsed after the

main php script file.

Note: The file is included as if it were

called by the php function include(),

therefore the directive include_path is

used and must be appropriately set.

Note: The auto-append is not

implemented if the php script file is

terminated by the php function exit().

 auto_globals_jit When enabled, the SERVER and ENV

variables are created when they're first

used (Just In Time) instead of when the

script starts. If these variables are not

used within a script, having this

directive on will result in a performance

Appendixes

131

gain.

The php directives register_globals,

register_long_arrays, and

register_argc_argv must be disabled for

this directive to be effective.

 auto_prepend_file Optionally defines the name of a file

that is automatically parsed before the

main php script file.

Note: The file is included as if it were

called by the php function include(),

therefore the directive include_path is

used and must be appropriately set.

 default_charset php outputs a default character set in

the Content-type: header. To disable

this output, set this directive to be an

empty string ("").

 default_mimetype MIME = Multipurpose Internet Mail

Extensions. This directive specifies the

protocol to be used for defining file

attachments for the World Wide Web.

 magic_quotes_gpc Enables/disables the Magic Quotes state

for GPC (Get, Post, Cookie) operations.

When this directive is enabled, all single

quotes ('), double quotes ("),

backslashes (\), and NULs are

automatically (preceded by) a

backslash. If magic_quotes_sybase is

also enabled, a single quote is escaped

with a single quote instead of with a

backslash.

 magic_quotes_runti

me

If this directive is enabled, most

functions that return data from an

external source, including databases

(such as SQL), exec(), and text files,

will have both single quotes (') and

double quotes (") escaped with

(preceded by) a backslash (\). If

Zend Core for i5/OS User Guide

132

magic_quotes_sybase is also enabled, a

single quote is escaped with a single

quote instead of with a backslash.

 magic_quotes_sybas

e

Enables/disables the use of Sybase-style

Magic Quotes: a single quote (') is

escaped with (preceded by) a single

quote instead of with a backslash (\).

Note: This directive is enabled only if

magic_quotes_gpc or

magic_quotes_runtime is also enabled.

 post_max_size Maximum size of POST data that php

will accept.

 register_argc_argv Specifies whether or not to instruct php

to declare the variables argv and argc,

which are used for holding the GET

information. If you do not use these

variables, disable this directive for

increased performance.

 register_globals Specifies whether or not to register the

EGPCS variables (Environment, Get,

Post, Cookie, and Server built-in) as

global variables. If you do not want to

clutter the global scope of your scripts

with user data, turn off this directive.

You will still be able to access the

EGPCS variables by turning on the

directive track_vars and then using the

$HTTP_*_VARS[] arrays.

 register_long_arrays Tells php whether or not to register the

deprecated long $HTTP_*_VARS type

predefined variables. When On

(default), long predefined php variables

like $HTTP_GET_VARS will be defined. If

you're not using them, it's

recommended to turn them off for

performance reasons. Instead, use the

superglobal arrays, like $_GET.

Appendixes

133

variables_order Specify the registration order for the

GET, POST, Cookie, Environment and

Server built-in variables (G, P, C, E, and

S, respectively - often referred to as

EGPCS and sometimes as GPC).

Registration is done from left to right,

and newer values override the older

ones.

Error

Handling

and

Logging

display_errors Specifies whether or not php prints

errors as part of the HTML script output.

Warning: For production Web sites, it

is strongly recommend to turn this

feature Off and use error logging

instead (see log_errors). Enabling

display_errors on a production Web site

can reveal security information to end

users, such as file paths on your Web

server, your database schema, and

other sensitive information.

 display_startup_error

s

Even when display_error is on, errors

that occur during php's startup

sequence are not displayed. It is

strongly recommended to keep this

option off, except for debugging

purposes.

 docref_ext Extensions for document reference.

See docref_root.

The value of docref_ext must begin with

a dot '.'

 docref_root The new error format contains a

reference to a page describing the error

or function causing the error. In case of

manual pages you can download the

manual in your language and set this ini

directive to the URL of your local copy.

If your local copy of the manual can be

reached by '/manual/' you can simply

Zend Core for i5/OS User Guide

134

use docref_root=/manual/. Additionally

you have to set docref_ext to match the

fileextensions of your copy

docref_ext=.html.

 error_append_string Specifies the string php outputs after an

error message.

 error_log Defines the file in which php errors

should be logged. If the special value

syslog is used, the errors are sent to

the system logger. On UNIX this is

syslog(3), on Windows it means the

Event Log.

 error_prepend_string Specifies the string php outputs before

an error message.

 error_reporting Specifies the types of php errors to be

reported. This directive is a bit field

whose value is composed by ORing the

values for the individual error types.

Warning: If you use the error-control

operator prefix @ when calling a php

expression (which turns off error

reporting for that particular expression),

then it is strongly recommend that you

have the track_errors feature enabled.

That way, if an error occurs during the

evaluation of that expression, you can

find the error message in the global

variable $php_errormsg.

 html_errors Turn off HTML tags in error messages.

The new format for HTML errors

produces clickable messages that direct

the user to a page describing the error

or function in causing the error. These

references are affected by docref_root

and docref_ext.

 ignore_repeated_erro

rs

Do not log repeated messages.

Repeated errors must occur in the same

Appendixes

135

file on the same line until

ignore_repeated_source is set to true.

 ignore_repeated_sou

rce

Ignore source of message when ignoring

repeated messages. When this setting is

On you will not log errors with repeated

messages from different files or

sourcelines.

 log_errors Specifies whether or not php logs errors

to a log file (server-specific log, stderr,

or error_log).

Warning: For production Web sites, it

is strongly recommend using error

logging instead of displaying errors; see

display_errors.

 log_errors_max_len Set the maximum length of log_errors

in bytes.

 report_memleaks If this parameter is set to Off, then

memory leaks will not be shown (on

stdout or in the log). This has only

effect in a debug compile, and if

error_reporting includes E_WARNING in

the allowed list.

 report_zend_debug Prints out descriptive bug messages in

case of error in PHP development.

track_errors Specifies whether or not php stores the

last error/warning message in

$php_errormsg.

Warning: If you use the error-control

operator prefix @ when calling a php

expression (which turns off error

reporting for that particular expression),

then it is strongly recommend that you

have the track_errors feature enabled.

That way, if an error occurrs during the

evaluation of that expression, you can

find the error message in the global

variable $php_errormsg.

Zend Core for i5/OS User Guide

136

File

Uploads

file_uploads Specifies whether to allow HTTP file

uploads.

 upload_max_filesize Specifies the maximum file size in bytes

that can be uploaded. Default is 2MB.

Note: The MAX_FILE_SIZE item of the

php file upload feature cannot specify a

file size that is greater than the size set

in this directive.

upload_tmp_dir Defines the temporary directory to use

for storing files when doing HTTP file

upload. If no directory is specified, the

system default directory is used.

Note: This directory must be writable

by the user currently running php.

Fopen

Wrappers

allow_url_fopen This option enables the URL-aware

fopen wrappers that enable accessing

URL object like files. Default wrappers

are provided for the access of remote

files using the ftp or http protocol, some

extensions like zlib may register

additional wrappers.

On Windows versions prior to php 4.3.0,

the following functions do not support

remote file accessing: include(),

include_once(), require(),

require_once() and the

imagecreatefromXXX functions in the

XLII, Image Functions extension.

allow_url_include This option allows the use of URL-aware

fopen wrappers with the following

functions: include(), include_once(),

require(), require_once.

This setting requires allow_url_fopen to

be on.

Language

Options

allow_call_time_

pass_reference

Enables/disables passing arguments by

reference at function-call time.

Note: This method of passing

Appendixes

137

arguments by reference is not

recommended, and future versions of

php/Zend are likely not to support it.

 asp_tags Enables/disables the use of ASP-like <%

%> tags, in addition to the usual <?php

?> tags. Enabling this directive also

enables the variable-value printing

shorthand of the form <%=$value %>.

For more information, see Escaping

from HTML.

 engine Turns php parsing on or off. This

directive is really only useful in the

Apache module version of php. It is

used by sites that would like to turn php

parsing on and off on a per-directory or

per-virtual server basis. By putting

engine off in the appropriate places in

the httpd.conf file, php can be enabled

or disabled.

 expose_php Specifies whether php can expose the

fact that it is installed on the server, for

example, by adding its signature to the

Web-server header. Exposing php is not

a security threat in any way, but it does

make it possible to determine that your

server uses php.

Note: This directive takes priority over

the expose_launchpad directive.

 implicit_flush Specifies whether or not to instruct php

to tell the output layer to flush itself

automatically after every output block.

If this directive is set to ON, it is

equivalent to calling the php function

flush() after every call to print() and

echo() and for every HTML block.

Warning: This directive is generally

recommended for debugging purposes

Zend Core for i5/OS User Guide

138

only, since turning it on can seriously

degrade performance.

 output_buffering Enables/disables output buffering.

Output buffering enables you to send

header lines (including cookies) even

after you have sent the body content,

however, php's output layer will be

slowed down a bit.

 output_handler You can redirect all of the output of your

scripts to a function. For example, if you

set output_handler to

mb_output_handler(), character

encoding will be transparently converted

to the specified encoding. Setting any

output handler automatically turns on

output buffering.

Note: You cannot use both

mb_output_handler() with

ob_iconv_handler() and you cannot use

both ob_gzhandler() and

zlib.output_compression.

 precision Specifies the number of significant digits

displayed after the decimal point for

floating point numbers. See also

bcmath.scale in the Extensions tab.

 serialize_precision Store serialize_precision significant

digits after the floating point.

 short_open_tag Enables/disables the use of the short

form of the php opening tag (<? ?>). If

this directive is disabled, you have to

use the long form of the php opening

tag (<?php ?>). The

<script>...</script> tags, like the long

form tag, are recognized regardless of

the value of this directive.

Note: php can be used in combination

with XML only if this directive is

Appendixes

139

disabled.

 unserialize_callback_

func

The unserialize() callback function will

called (with the undefined class' name

as parameter), if the unserializer finds

an undefined class which should be

instanciated. A warning appears if the

specified function is not defined, or if

the function doesn't include/implement

the missing class. Therefore, only set

this entry if you want to implement such

a callback-function.

 y2k_compliance Specifies whether or not the php script

should be made year-2000 compliant.

Warning: Making the php script Y2K

compliant (by setting this directive to

On) will cause problems with non-Y2K-

compliant browsers.

zend.ze1_compatibili

ty_mode

Enable compatibility mode with Zend

Engine 1 (php 4). It affects the cloning,

casting (objects with no properties cast

to FALSE or 0), and comparing of

objects. In this mode, objects are

passed by value instead of reference by

default.

- Colors for

Syntax

Highlighting

mode

highlight.bg Specifies color used for highlighting a

background. You can supply a different

value either in RGB format or as a

standard color name.

 highlight.comment Specifies the color used for highlighting

a comment. You can supply a different

value either in RGB format or as a

standard color name.

 highlight.default Specifies the color used for highlighting

a default. You can supply a different

value either in RGB format or as a

standard color name.

 highlight.html Specifies the color used for highlighting

Zend Core for i5/OS User Guide

140

html text. You can supply a different

value either in RGB format or as a

standard color name.

 highlight.keyword Specifies the color used for highlighting

a keyword. You can supply a different

value either in RGB format or as a

standard color name.

highlight.string Specifies the color used for highlighting

a string. You can supply a different

value either in RGB format or as a

standard color name.

- Safe

Mode

disable_classes This directive allows you to disable

certain classes for security reasons. It

takes on a comma-delimited list of class

names. disable_classes is not affected

by Safe Mode.

 disable_functions Letting the user call certain functions

may constitute a potential security

breach. This directive specifies a

comma-delimited list of functions names

that are disabled for security reasons.

This directive is not affected by whether

Safe Mode is enabled or disabled.

Warning: If this directive is empty, php

will let the user call any function.

 open_basedir Limits the files that can be opened by

php to the specified directory-tree,

including the file itself. This directive is

NOT affected by whether Safe Mode is

turned On or Off.

 safe_mode Enables/disables Safe Mode. Enabling

Safe Mode imposes several restrictions

on what php can do, for example, files

can be opened only if they are in the

document root.

Note: CGI users should always enable

Safe Mode.

Appendixes

141

 safe_mode_exec_dir Letting the user run certain programs

may constitute a potential security

breach. This directive contains a

directory name, such as usr/local/bin.

When php is in Safe Mode, the user can

run only those programs located in the

given directory. system() and other

functions that execute system programs

will refuse to run programs in other

directories.

Warning: If this directive is empty, php

will let the user run any program.

 safe_mode_gid By default, Safe Mode does a UID

compare check when opening files. If

you want to relax this to a GID

compare, then turn on safe_mode_gid.

This specifies whether to use UID

(FALSE) or GID (TRUE) checking upon

file access.

safe_mode_include_

dirs

UID/GID checks are bypassed when

including files from this directory and its

subdirectories (directory must also be in

include_path or full path must

including).

As of php 4.2.0, this directive can take a

colon (semi-colon on Windows)

separated path in a fashion similar to

the include_path directive, rather than

just a single directory.

Mail mail.force_extra_par

ameters

Forces the addition of the specified

parameters to be passed as extra

parameters to the sendmail binary.

These parameters will always replace

the value of the 5th parameter to

mail(), even in safe mode.

 sendmail_from Specifies which "From:" mail address

should be used in mail sent from php

Zend Core for i5/OS User Guide

142

under Windows. This directive also sets

the "Return-Path:" header.

 sendmail_path Where the sendmail program can be

found, usually /usr/sbin/sendmail or

/usr/lib/sendmail. configure does an

honest attempt of locating this one for

you and set a default, but if it fails, you

can set it here.

Systems not using sendmail should set

this directive to the sendmail

wrapper/replacement their mail system

offers, if any.

 SMTP Used under Windows only. Specifies the

host name or IP address of the SMTP

server php which should be used for

mail sent with the mail() function.

smtp_port Used under Windows only: Number of

the port to connect to the server

specified with the SMTP setting when

sending mail with mail(); defaults to 25.

Misc. browscap Defines the name of the browser

capabilities file.

Note: For a description of the settings

in the browser capabilities file itself, see

the php function get_browser().

 ignore_user_abort If false, scripts will be terminated as

soon as they try to output something

after a client has aborted their

connection.

Paths and

Directories

doc_root Specifies the php root directory on the

server. If php is configured in Safe Mode

(the directive safe_mode is enabled), no

files outside this directory are served.

Note: This directive is used only if it is

not empty.

 enable_dl Specifies whether or not to enable the

php function dl(), which loads php

Appendixes

143

extensions at run time.

Note: The function dl() does not work

correctly under multithreaded servers,

such as IIS or Zeus, and is

automatically disabled on these servers.

 extension_dir Defines the directory in which php

should look for dynamically loadable

extensions (modules).

 include_path Defines a list of directories where the

following functions will search for files:

require(), include(), and

fopen_with_path(). The format is same

as the system's PATH environment

variable: a list of directories separated

by colons (:) in UNIX or by semicolons

(;) in Windows. The default value for

this directive is an empty string ("").

Only the current directory will be

searched.

user_dir Defines the base name of the directory

used on a user's home directory for php

files, for example, public_html. This is

the directory under which php opens the

script using /~username.

Note: This directive is used only if it is

not empty.

Resource

Limits

max_execution_time Specifies the maximum time in seconds

that one script is allowed to run before

it is terminated by the parser. This helps

prevent poorly written scripts from tying

up the server. The present default value

is 30 seconds.

 max_input_nesting_l

evel

Limits the nesting level of input

variables.

 max_input_time Sets the maximum time in seconds a

script is allowed to receive input data,

like POST, GET and file uploads. The

Zend Core for i5/OS User Guide

144

present default value is 60 seconds.

 memory_limit Specifies the maximum amount of

memory in bytes that one script is

allowed to allocate. This helps prevent

poorly written scripts from tying up all

the available memory on a server. The

present default value is 128MB.

 realpath_cache_size Determines the size of the realpath

cache to be used by php. This value

should be increased on systems where

php opens many files, to reflect the

quantity of the file operations

performed.

realpath_cache_tll Duration of time (in seconds) for which

to cache realpath information for a

given file or directory. For systems with

rarely changing files, consider increasing

the value.

Appendixes

145

Appendix C - Zend Core Extensions
The following PHP Extensions are included in the Core version 2.5

installation package:

Legend:

- Extension installed but disabled by default.

+ Extension installed and enabled by default.

Extension

Name

Description Status

bcmath Arbitrary Precision Mathematics - PHP offers the

Binary Calculator which supports numbers of any size

and precision, represented as strings.

+

bz2 Bzip2 Compression - The bzip2 functions are used to

transparently read and write bzip2 (.bz2) compressed

files.

-

calendar Calendar Conversions - The calendar extension

presents a series of functions to simplify converting

between different calendar formats. The intermediary

or standard it is based on is the Julian Day Count.

-

ctype Character Classifications - Checks whether a

character or string falls into a certain character class

according to the current locale.

+

curl Client URL Library Functions - Allows you to

connect to and communicate with many different types

of servers with many different types of protocols.

Note:

curlib libraries must be installed in order for this

extension to function.

+

date Date Module - Allows you to get the date from the

server where your PHP scripts are running. You can

use this function to format the date in many different

ways.

+

dom DOM XML- The DOM extension is the replacement for

the DOM XML extension from PHP 4. The extension still

contains many old functions, but they should no longer

+

Zend Core for i5/OS User Guide

146

be used. In particular, functions that are not object-

oriented should be avoided.

The extension allows you to operate on an XML

document with the DOM API.

exif Exchangeable Image File Format Data - With the

exif extension you are able to work with image meta

data.

-

ftp FTP Client - The functions in this extension implement

client access to file servers speaking the File Transfer

Protocol (FTP). This extension is meant for detailed

access to an FTP server providing a wide range of

control to the executing script.

-

gd GD (Image Manipulation) - With the GD library of

image functions PHP can be used to create and

manipulate image files in a variety of different image

formats, including gif, png, jpg, wbmp, and xpm. Even

more convenient, PHP can output image streams

directly to a browser.

+

gettext -

gmp GNU MP Library (Arbitrary Length Integers) -

These functions allow you to work with arbitrary-length

integers using the GNU MP library.

Note:

GMP libraries must be installed in order for this

extension to function.

-

i5com The programming interface that is used to program the

business logic.

+

ibm_db2 IBM DB2 Database Access - These functions enable

you to access IBM DB2 Universal Database, IBM

Cloudscape, and Apache Derby databases using the

DB2 Call Level Interface (DB2 CLI).

+

iconv Character Set Conversion - This module contains an

interface to iconv character set conversion facility.

With this module, you can turn a string represented by

a local character set into the one represented by

another character set, which may be the Unicode

character set.

+

Appendixes

147

imap IMAP, POP3 and NNTP - These functions are not

limited to the IMAP protocol, despite their name. The

underlying c-client library also supports NNTP, POP3

and local mailbox access methods.

+

JSON Implements the JavaScript Object Notation (JSON)

data-interchange format. The decoding is handled by a

parser based on the JSON_checker by Douglas

Crockford.

+

ldap OpenLDAP - LDAP is the Lightweight Directory Access

Protocol, and is a protocol used to access "Directory

Servers". The Directory is a special kind of database

that holds information in a tree structure.

Note:

LDAP libraries must be installed in order for this

extension to function

-

mbstring Multibyte Character Processing - Multibyte

character encoding schemes were developed to

express more than 256 characters in the regular

bytewise coding system.

When you manipulate (trim, split, splice, etc.) strings

encoded in a multibyte encoding, you need to use

special functions since two or more consecutive bytes

may represent a single character in such encoding

schemes.

+

mcrypt MCrypt - This is an interface to the mcrypt library,

which supports a wide variety of block algorithms such

as DES, TripleDES, Blowfish (default), 3-WAY, SAFER-

SK64, SAFER-SK128, TWOFISH, TEA, RC2 and GOST

in CBC, OFB, CFB and ECB cipher modes. Additionally,

it supports RC6 and IDEA which are considered "non-

free".

Note:

Libmcrypt libraries must be installed in order for this

extension to function.

-

mhash Hash Algorithms - Mhash can be used to create

checksums, message digests, message authentication

codes, and more.

-

Zend Core for i5/OS User Guide

148

Note:

Libmhash libraries must be installed in order for this

extension to function.

ming Ming Functions for Flash - An open-source (LGPL)

library which allows you to create SWF ("Flash")

format movies.

Warning: This extension is experimental. The

behaviour of this extension may change without notice

in a future release of PHP. Use this extension at your

own risk.

Note:

Ming libraries must be installed in order for this

extension to function.

-

mssql Allows you to access MS SQL database servers.

Note:

FreeTDS libraries must be installed in order for this

extension to function.

In addition, the following steps must be performed to

allow Zend Core to connect to the MSSQL database

server:

1. Open the freetds.conf file, located in

/usr/local/Zend/Core/etc/

2. Under the [SQLserver_definition] section, change

the 'host' parameter to your SQL server address,

(e.g. host = 10.1.3.12) and ensure the ‘tds

version’ parameter matches the TDS version on

your system.

+

mysql MySQL - Allows you to access MySQL database

servers.

Note:

MySQL libraries must be installed in order for this

extension to function

+

mysqli MySQL Improved - Allows you to access the

functionality provided by MySQL 4.1 and above.

Note:

MySQL libraries must be installed in order for this

extension to function

+

Appendixes

149

openssl OpenSSL - This module uses the functions of

>>OpenSSL for generation and verification of

signatures and for sealing (encrypting) and opening

(decrypting) data.

Note:

OpenSSL libraries must be installed in order for this

extension to function

+

pcntl Process Control Functions - Process Control support

in PHP implements the Unix style of process creation,

program execution, signal handling and process

termination. Process Control should not be enabled

within a Webserver environment and unexpected

results may happen if any Process Control functions

are used within a webserver environment.

+

pcre Perl Compatible Regular Expressions - The syntax

for patterns used in these functions closely resembles

Perl.

+

pdo Base PDO (PHP Data Objects) Driver - The PHP

Data Objects (PDO) extension defines a lightweight,

consistent interface for accessing databases in PHP.

Each database driver that implements the PDO

interface can expose database-specific features as

regular extension functions.

+

pdo_mysql Allows access to MySQL 3.x/4.0 databases +

posix POSIX - Contains an interface to those functions

defined in the IEEE 1003.1 (POSIX.1) standards

document which are not accessible through other

means.

Warning: Sensitive data can be retrieved with the

POSIX functions, e.g. posix_getpwnam() and friends.

None of the POSIX functions perform any kind of

access checking when safe mode is enabled. It's

therefore strongly advised to disable the POSIX

extension.

+

reflection PHP Reflection Support - PHP 5 comes with a

complete reflection API that adds the ability to

reverse-engineer classes, interfaces, functions and

+

Zend Core for i5/OS User Guide

150

methods as well as extensions. The reflection API also

offers ways of retrieving doc comments for functions,

classes and methods.

session Session Management - Session support in PHP

consists of a way to preserve certain data across

subsequent accesses.

+

shmop Shared Memory - Shmop is an easy-to-use set of

functions that allows PHP to read, write, create and

delete Unix shared memory segments.

-

simplexml SimpleXML - The SimpleXML extension provides a

very simple and easily usable toolset to convert XML to

an object that can be processed with normal property

selectors and array iterators.

Note:

libxml libraries must be installed in order for this

extension to function

+

soap SOAP - The SOAP extension can be used to write

SOAP Servers and Clients.

Note:

libxml libraries must be installed in order for this

extension to function

+

sockets Socket Communications - The socket extension

implements a low-level interface to the socket

communication functions based on the popular BSD

sockets, providing the possibility to act as a socket

server as well as a client.

+

spl Standard PHP Library - SPL is a collection of

interfaces and classes that are meant to solve

standard problems.

+

sqlite SQLite - This is an extension for the SQLite

Embeddable SQL Database Engine. SQLite is a C

library that implements an embeddable SQL database

engine. Programs that link with the SQLite library can

have SQL database access without running a separate

RDBMS process.

-

sysvmsg Enables System V messages support - The

messaging functions may be used to send and receive

-

Appendixes

151

messages to/from other processes. They provide a

simple and effective means of exchanging data

between processes, without the need for setting up an

alternative using Unix domain sockets.

sysvsem Enables System V semaphore support -

Semaphores may be used to provide exclusive access

to resources on the current machine, or to limit the

number of processes that may simultaneously use a

resource.

-

sysvshm Enables System V shared memory support -

Shared memory may be used to provide access to

global variables.

-

standard Standard PHP functions +

tidy Tidy HTML Clean and Repair - Tidy is a binding for

the Tidy HTML clean and repair utility which allows you

to not only clean and otherwise manipulate HTML

documents, but also traverse the document tree.

Note:

libtidy libraries must be installed in order for this

extension to function

-

tokenizer Interface to Zend Engine's PHP Scanner - The

tokenizer functions provide an interface to the PHP

tokenizer embedded in the Zend Engine. Using these

functions you may write your own PHP source

analyzing or modification tools without having to deal

with the language specification at the lexical level.

-

wddx WDDX (Web Distributed Data Exchange) - These

functions are intended for work with >>WDDX

Note:

expat (Apache) libraries must be installed in order for

this extension to function

+

xml SAX XML - XML (eXtensible Markup Language) is a

data format for structured document interchange on

the Web. This toolkit lets you parse, but not validate,

XML documents. This extension lets you create XML

parsers and then define handlers for different XML

events.

+

Zend Core for i5/OS User Guide

152

xmlreader XML Reader - The XMLReader extension is an XML

Pull parser. The reader acts as a cursor going forward

on the document stream and stopping at each node on

the way.

Note:

libxml libraries must be installed in order for this

extension to function

-

xmlwriter XML Writer - Represents a writer that provides a non-

cached, forward-only means of generating streams or

files containing XML data. This extension can be used

in an object oriented style or a procedural one. Every

method documented describes the alternative

procedural call.

+

xsl XSL Transformations - The XSL extension

implements the XSL standard, performing XSLT

transformations using the libxslt library.

Note:

libxslt libraries must be installed in order for this

extension to function

-

zip ZIP Archives - Enables you to transparently read ZIP

compressed archives and the files inside them.

Note:

Zlib libraries must be installed in order for this

extension to function

-

zlib zlib Compression (Incl. gzip) - Enables you to

transparently read and write gzip (.gz) compressed

files, through versions of most of the file system

functions which work with gzip-compressed files (and

uncompressed files without sockets).

+

Note:
Some extensions have dependencies on certain libraries.

For a full list of libraries installed with Zend Core, see Appendix D - Libraries.

Appendixes

153

To uninstall extensions/Zend Core components:

1. Open the Zend Core Setup Tool by running the command "go

zendcore/zcmenu" in your i5/OS emulation screen.

2. Select Option 2 - Update via Zend Network menu, then Option 6 -

Remove Zend Core Components.

A list of erasable components will be displayed.

Extensions will be prefixed with a "/ext".

3. Press Page Up or Page Down to scroll through the list.

4. Select which libraries to delete by marking an X next to the required

library and pressing Enter.

5. Press F8 to remove any selected extensions.

6. Restart the web server in order for your changes to take effect.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

Zend Core for i5/OS User Guide

154

Appendix D - Libraries
The following libraries are included in the Core version 2.5 installation

package:

Library Description

libcurl A client-side URL transfer library supporting FTP, FTPS, HTTP,

HTTPS, SCP, SFTP, TFTP, TELNET, DICT, FILE and LDAP.

See http://curl.haxx.se for more information.

GMP GMP is a library for arbitrary precision arithmetics, operating

on signed integers, rational numbers, and floating point

numbers.

See http://gmplib.org for more information.

LDAP client

libraries

The Lightweight Directory Access Protocol (LDAP) libraries

provide access to X.500 directory services.

See http://www.openldap.org for more information.

libmcrypt Libmcrypt is a companion to Mcrypt. It contains the encryption

functions and provides a standardized mechanism for

accessing them.

See http://sourceforge.net/projects/mcrypt for more

information.

Libmhash Libmhash provides a uniform interface to a large number of

hash algorithms. These algorithms can be used to compute

checksums, message digests, and other signatures.

See http://mhash.sourceforge.net for more information.

Ming

Libraries

Ming is an SWF ("Flash") file format output library. It is written

in C, with wrappers for C++, Python, and PHP, plus

rudimentary support for Ruby and Perl.

See http://sourceforge.net/projects/ming for more

information.

OpenSSL OpenSSL is a library that provides cryptographic functionality

to applications such as secure web servers.

See http://www.openssl.org for more information.

Appendixes

155

t1 t1lib is a library written in C which implements functions for

generating bitmaps from Adobe Type 1 fonts.

For more information see:

http://gnuwin32.sourceforge.net/packages/t1lib.htm

libxml Libxml2 is the XML C parser and toolkit developed for the

Gnome project (but usable outside of the Gnome platform).

See http://www.xmlsoft.org for more information.

easycom

libtidy TLibTidy is a Pascal wrapper for the library version of the HTML

Tidy program.

See http://tidy.sourceforge.net for more information.

libxslt Libxslt is the XSLT C library developed for the GNOME project.

XSLT itself is an XML language to define transformation for

XML.

See http://xmlsoft.org/XSLT for more information.

MySQL

Libraries

A collection of MySQL Libraries.

See http://www.mysql.com for more information.

PostgresSQL

Libraries

Included with its standard function library are hundreds of

built-in functions that range from basic math and string

operations to cryptography and Oracle compatibility.

See http://www.postgresql.org for more information.

IBM DB2

Client

Libraries

Provide connectivity to IBM DB2 databases.

See http://www.ibm.com/db2 for more information.

libtds Allows for connection to FreeTDS libraries.

See http://www.freetds.org/reference/a00268.html for more

information.

Note:

The listed libraries will be installed by default with Zend Core

Zend Core for i5/OS User Guide

156

To uninstall libraries:

7. Open the Zend Core Setup Tool by running the command "go

zendcore/zcmenu" in your i5/OS emulation screen.

8. Select Option 2 - Update via Zend Network menu, then Option 6 -

Remove Zend Core Components.

A list of erasable components will be displayed.

Libraries will be prefixed with a "/lib".

9. Press Page Up or Page Down to scroll through the list.

10. Select which libraries to delete by marking an X next to the required

library and pressing Enter.

11. Press F8 to remove any selected libraries.

12. Restart the web server in order for your changes to take effect.

To restart your web server:

In the Zend Core Setup Tool main menu, select Option 5 - Service

Management menu and then select Option 6 - Restart Apache server

instance.

Appendixes

157

Appendix E - Misc. Directives Configuration Information
The following Misc. Directives can be configured from Zend Core:

Categories:

dbx - Database Abstraction Layer

Informix

Ingres II

mSQL

PostgressSQL

SQL

Sybase

Sybase-CT

Syslog

Verisign Payflow Pro

Other ini File Directives

dbx -

database

Abstract

Layer

dbx.colnames_case

Specifies whether to return column

names unchanged or converted to

uppercase or lowercase.

Informix ifx.allow_persistent Specifies whether or not to allow

persistent Informix connections.

 ifx.blobinfile Set this directive to True if you want to

return Informix BLOB columns in a file,

or to False if you want to keep them in

memory. You can override the setting of

this directive at run time with the PHP

function ifx_blobinfile_mode().

 ifx.byteasvarchar Set this directive to True if you want to

return Informix BYTE columns as

normal strings in select statements, or

to False if you want to use blob id

parameters. You can override the

setting of this directive at run time with

the PHP function ifx_byteasvarchar().

 ifx.charasvarchar Enables/disables trimming the trailing

spaces from Informix CHAR columns

when they are fetched.

Note: Enabling this directive can be

very helpful to Informix SE users.

 ifx.default_host Defines the Informix default host to

connect to if the default host is not

defined in either ifx_connect() or

Zend Core for i5/OS User Guide

158

ifx_pconnect(). Note: When PHP is in

Safe Mode, this directive is not used.

 ifx.default_password Defines the Informix default password

to use if the default password is not

defined in either ifx_connect() or

ifx_pconnect(). Note: When PHP is in

Safe Mode, this directive is not used.

 ifx.default_user Defines the Informix default user ID to

use if the default user ID is not defined

in either ifx_connect() or

ifx_pconnect(). Note: When PHP is in

Safe Mode, this directive is not used.

 ifx.max_links Specifies the maximum number of all

Informix connections per process,

including persistent connections. -1

means no limit.

 ifx.max_persistent Specifies the maximum number of

persistent Informix connections per

process. -1 means no limit.

 ifx.nullformat Set this directive to True if you want

Informix NULL columns returned as the

literal string "NULL", or to False if you

want them returned as the empty string

"". You can override the setting of this

directive at run time with the PHP

function ifx_ nullformat().

 ifx.textasvarchar Set this directive to On if you want to

return Informix TEXT columns as

normal strings in select statements, or

to False if you want to use blob id

parameters. You can override the

setting of this directive at run time with

the PHP function ifx_textasvarchar().

Ingres II ingres.allow_persistent Specifies whether or not to allow

persistent Ingres II connections.

 ingres.default_databas

e

Defines the Ingres II default database,

where

Appendixes

159

the format is

[node_id::]dbname[/srv_class]. Note:

When PHP is in Safe Mode, this directive

is not used.

 ingres.default_passwor

d

Defines the Ingres II default password.

Note: When PHP is in Safe Mode, this

directive is not used.

 ingres.default_user Defines the Ingres II default user.

Note: When PHP is in Safe Mode, this

directive is not used.

 ingres.max_links Specifies the maximum number of all

Ingres II connections per process,

including persistent connections. -1

means no limit.

 ingres.max_persistent Specifies the maximum number of

persistent Ingres II connections per

process. -1 means no limit.

mSQL

msql.allow_persistent Specifies whether or not to allow

persistent mSQL connections.

 msql.max_links Specifies the maximum number of all

mSQL connections per process,

including persistent connections. -1

means no limit.

 msql.max_persistent

Specifies the maximum number of

persistent mSQL connections per

process. -1 means no limit.

PostgressS

QL

pgsql.allow_persistent Specifies whether or not to allow

persistent PostgresSQL connections.

 pgsql.auto_reset_persi

stent

Detect broken persistent links with

pg_pconnect(). Needs a little overhead.

 pgsql.ignore_notice Whether or not to ignore PostgreSQL

backend notices.

 pgsql.log_notice Whether or not to log PostgreSQL

backends notice messages. The PHP

directive pgsql.ignore_notice must be

off in order to log notice messages.

 pgsql.max_links Specifies the maximum number of all

Zend Core for i5/OS User Guide

160

 PostgresSQL connections per process,

including persistent connections. -1

means no limit.

 pgsql.max_persistent

Specifies the maximum number of

persistent PostgresSQL connections per

process. -1 means no limit.

SQL sql.safe_mode

If the SQL Safe Mode option is enabled

the MySQL and Ingres extensions will

ignore the supplied host, user and

password information and will use only

the default ones.

Sybase sybase.allow_persisten

t

Specifies whether or not to allow

persistent Sybase connections.

 sybase.compatability_

mode

Specifies compatibility mode with the

older versions of PHP 3.0. If this

directive is on, it will cause PHP to

automatically assign types to results

according to their Sybase type, instead

of treating all results as strings. Note:

This compatibility mode probably will

not stay around forever, so try making

the necessary changes to your code and

turning off this directive.

 sybase.max_links

Specifies the maximum number of all

Sybase connections per process,

including persistent connections. -1

means no limit.

 sybase.max_persistent

Specifies the maximum number of

persistent Sybase connections per

process. -1 means no limit.

 sybase.min_error_seve

rity

Specifies the minimum Sybase error

severity that PHP displays. Errors that

have a severity that is lower than the

value of this directive are not displayed.

 sybase.min_message_

severity

Specifies the minimum Sybase message

severity that PHP displays. Messages

Appendixes

161

 that have a severity that is lower than

the value of this directive are not

displayed.

Sybase-CT sybct.allow_persistent

Specifies whether or not to allow

persistent Sybase-CT connections.

 sybct.max_links Specifies the maximum number of all

Sybase-CT connections per process,

including persistent connections. -1

means no limit.

 sybct.max_persistent

Specifies the maximum number of

persistent Sybase-CT connections per

process. -1 means no limit.

 sybct.min_client_sever

ity

Specifies the minimum Sybase-CT client

message severity to display; client

messages having a severity that is

lower than the value of this directive are

not displayed.

 sybct.min_server_seve

rity

Specifies the minimum Sybase-CT

server message severity to display;

server messages having a severity that

is lower than the value of this directive

are not displayed.

Syslog define_syslog_variable

s

Specifies whether or not to define the

syslog variables, such as $LOG_PID,

$LOG_CRON, etc. Performance is

improved by setting this directive to 0.

At run time you can always define the

syslog variables by calling the PHP

function define_syslog_variables().

Verisign

Payflow Pro

pfpro.defaulthost

Defines the Verisign Payflow Pro default

host that PHP connects to, i.e. the

default Signio server.

Note: For processing live transactions

you cannot use the default value as it

stands. One reasonable alternative is to

change the default to be

connect.signio.com.

Zend Core for i5/OS User Guide

162

Note: When PHP is in Safe Mode, this

directive is not used.

 pfpro.defaultport

Defines the Verisign Payflow Pro default

port that PHP connects to.

Note: When PHP is in Safe Mode, this

directive is not used.

 pfpro.defaulttimeout

Specifies the Verisign Payflow Pro

default timeout, in seconds.

Note: The timeout countdown appears

to begin only after a link to the

processor has been established,

therefore, in the event of DNS or

network problems, your script could

continue for a long period of time.

Appendixes

163

Appendix F - I5 Toolkit Templates
Zend Studio IDE for i5 comes complete with the following code templates

containing i5 PHP API Toolkit functions:

I5 Template Explanation

i5ActiveJobs Enables retrieving the system's active jobs, it:

1. Connects to i5 server

2. Opens active job list

3. Gets array for an active job entry

4. Closes handle received from i5_job_list

function

5. Closes connection to i5 server

i5Connect Enables connecting to the i5 server, it:

1. Connects to i5 server

2. Closes connection to i5 server

i5DataAreaCreate Creates the data area, it:

1. Connects to i5 server

2. Creates data area of given size

3. Closes connection to i5 server

i5DataAreaDelete Enables deleting the data area, it:

1. Connects to i5 server

2. Deletes data area

3. Closes connection to i5 server

i5DataAreaRead Enables reading from a data area, it:

1. Connects to i5 server

2. Reads from data area

3. Closes connection to i5 server

i5DataAreaWrite Enables reading from a data area, it:

1. Connects to i5 server

2. Reads from the data area

3. Closes connection to i5 server

i5DtaqReceive Enables reading data from the data queue without

key, it:

1. Connects to i5 server

2. Reads data from the data queue without key

3. Closes connection to i5 server

i5DtaqReceiveKey Enables reading data from the data queue with

Zend Core for i5/OS User Guide

164

key, it:

1. Connects to i5 server

2. Reads data from the data queue with key

3. Closes connection to i5 server

i5DtaqSend Enables putting data to the data queue without

key, it:

1. Connects to i5 server

2. Puts data to the data queue without key

3. Closes connection to i5 server

i5DtaqSendKey Enables putting data into the data queue without a

key, it

1. Connects to i5 server

2. Puts data to the data queue without key

3. Closes connection to i5 server

i5JobLogs Enables retrieving job log entries, it:

1. Connects to i5 server

2. Opens job log

3. Gets array for a job log entry

4. Closes handle received from i5_jobLog_list

function

5. Closes connection to i5 server

i5ObjectListing Enables getting an array with the message element

for an object list entry, it:

1. Connects to i5 server

2. Opens object list

3. Gets for a object list entry

4. Closes handle received from i5_objects_list

function

5. Closes connection to i5 server

i5Program Enables calling a program and accept results from

it, it:

1. Connects to i5 server

2. Opens a program or service procedure and

prepares it to be run

3. Calls the program and optionally accepts

results

4. Free program resource handle

Appendixes

165

5. Closes connection to i5 server

i5ProgramService Creates Web Services class enabling invoking an

RPG program, it:

1. Connects to i5 server

2. Opens a program or service procedure and

prepares it to be run

3. Calls the program and optionally accepts

results

4. Free program resource handle

5. Closes connection to i5 server

i5Spool Enables getting spool file data from the queue and

getting the data from the spool file, it:

1. Connects to i5 server

2. Creates an pool file lists, of certain output

queue or for all queues

3. Gets spool file data from the queue

4. Get the data from the spool file

5. Free spool list resource

6. Closes connection to i5 server

i5UserSpaceCreate Creates a new user space object, it:

1. Connects to i5 server

2. Creates new user space object

3. Closes connection to i5 server

i5UserSpaceDelete Enables deleting a user space object, it:

1. Connects to i5 server

2. Deletes user space object

3. Closes connection to i5 server

i5UserSpaceGet Retrieves user space data, it:

1. Connects to i5 server

2. Opens a user space and prepares it to be run

3. Retrieves user space data

4. Closes connection to i5 server

i5UserSpacePut Enables to add user space data, it:

1. Connects to i5 server

2. Opens a user space and prepares it to be run

3. Adds user space data

4. Closes connection to i5 server

167

Index

1

1/Requests Per Second 30

2

2xx .. 30

A

About 19

Access...................................... 19

Add Cookie 30

Add/update 33

Additional PHP Configuration

Information 35

Additional Zend Products and

Services................................126

Advanced Watches 43

allow_call_time_130

allow_url_fopen130

allow_url_include130

Allowed Hosts............................ 50

Allowed Hosts for Tunneling......... 50

always_populate_raw_post_data.130

Analyzing.................................. 30

Apache Timeout......................... 30

API .. 27

Apply settings............................ 19

arg_separator.input...................130

arg_separator.output.................130

asp_tags..................................130

Attended Rollbacks....................... 7

auto_append_file130

auto_globals_jit130

auto_prepend_file130

Auto-Update.............................125

Auto-Updater125

Average.................................... 30

B

bar charts 27

bcmath 145

Benchmark..................... 23, 27, 30

Benchmark Result Screen 30

browscap35, 130

Built-In Extensions 37

Bytes

sum....................................... 30

transfer.................................. 30

Bytes.. 30

bz2 .. 145

C

Calculated 30

calendar.................................. 145

Central Monitoring and Management

... 126

Change Password 19

Changes, Discard 19

Changing phpInfo....................... 29

Check Updates........................... 33

classes...................................... 24

Code Acceleration..................... 126

Colors for Syntax Highlighting mode

......................................35, 130

com_dotnet 145

command....................................6

Compiling extensions 37

Complete Requests..................... 30

Concurrent connections............... 30

Conditional Breakpoints............... 43

Config File 27

Configuration

Extensions.............................. 23

PHP values 35

Updates 33

Configuration............................. 26

Configuration............................. 35

Zend Core for i5/OS User Guide

168

Configuration / Directives............ 49

Configuration Options 29

Configuration, Server 27

configure Misc. directives 49

Connection time out 30

Connections 30

Consistency Checking 7

Consulting Services125

Content Caching126

Control Center26, 27, 29, 30, 33

Cookie...................................... 30

ctype145

curl ...145

D

Data Handling 35, 130

Database-driven Web 30

date..145

dbx - database Abstract Layer157

dbx.colnames_case157

Debug 50

Debugger, Zend....................43, 50

Debugging 43

default_charset.........................130

default_mimetype130

define_syslog_variables157

Denied Hosts............................. 50

directive 37

Directives35, 49

disable_classes.........................130

disable_functions130

Discard Changes 19

Disclaimer................................... 1

Disk Space.............................7, 27

Display 27

display_errors130

display_startup_errors...............130

doc_root..................................130

docref_ext130

docref_root 130

Documentation 26, 53, 55

dom 145

download6

Download Serving 126

E

Education Services 125

Enable extension........................ 37

enable_dl 130

engine35, 130

environment 29, 30, 50

Error Handling and Logging........ 130

error_append_string 130

error_log................................. 130

error_prepend_string................ 130

error_reporting 130

exif .. 145

Expose Remotely........................ 50

expose_php............................. 130

Extension Configuration............... 23

Extension Manager 37

Extension Manager, Zend 43

Extension Status19, 37

extension_dir........................... 130

Extensions

Adding 37

Load 37

Unload 37

Extensions...................... 19, 29, 35

Extensions................................. 37

Extensions............................... 145

F

Failed Requests.......................... 30

feedback 32

File Compression 126

File Uploads............................. 130

file_uploads............................. 130

firewall 43

Index

169

Fopen Wrappers........................130

Framework...........................23, 24

Framework, Zend....................... 23

Free Disk Space......................... 27

FreeTDS154

Frequently Asked Questions........125

ftp ..145

Functional Overview 23

G

gd...145

Getting Started.......................... 19

gmp................................ 145, 154

Guard, Zend....................... 43, 126

H

Help....................................19, 26

Helpdesk125

highlight.bg..............................130

highlight.comment130

highlight.default........................130

highlight.html...........................130

highlight.keyword130

highlight.string130

HTML 30

HTML Transferred....................... 30

html_errors..............................130

HTTP.. 30

HTTP Headers............................ 29

I

IBM DB2 Client Libraries154

ibm_db2145

iconv.......................................145

ifx.allow_persistent157

ifx.blobinfile157

ifx.byteasvarchar157

ifx.charasvarchar157

ifx.default_host157

ifx.default_password157

ifx.default_user157

ifx.max_links 157

ifx.max_persistent.................... 157

ifx.nullformat........................... 157

ifx.textasvarchar 157

ignore_repeated_errors............. 130

ignore_repeated_source 130

ignore_user_abort 130

imap....................................... 145

implicit_flush 130

include_path............................ 130

Information 19, 29, 53

Informix.................................. 157

Informix Client Software

Development Kit (CSDK) 154

Ingres II 157

ingres.allow_persistent 157

ingres.default_database 157

ingres.default_password............ 157

ingres.default_user................... 157

ingres.max_links 157

ingres.max_persistent............... 157

Install -g.....................................6

Install -n.....................................6

install Updates7

installation6

Installer Tool6

Interface................................... 26

Internet 33

J

JSON 145

K

Keep Alive................................. 30

Knowledgebase32, 125

L

Language Options..................... 130

ldap 145

LDAP client libraries 154

libcurl 154

Zend Core for i5/OS User Guide

170

libmcrypt154

Libmhash.................................154

Libraries154

libtidy......................................154

libxml......................................154

libxslt154

License..................................... 29

Linux.......................................126

Load Extension 19

Loading Zend Framework classes . 24

log out 19

log_errors130

log_errors_max_len130

Login.. 19

M

Macintosh126

magic_quotes_gpc130

magic_quotes_runtime130

magic_quotes_sybase................130

Mail ..130

mail.force_extra_parameters130

max_execution_time130

max_input_nesting_level130

max_input_time130

mbstring..................................145

mcrypt145

Mean Time per Request 30

member registration..................... 6

memory_limit...........................130

Menu.. 26

mhash.....................................145

ming145

Ming Libraries...........................154

Misc.130

Misc. Directives35, 49

monitoring 27

MS SQL (FreeTDS)157

mSQL......................................157

msql.allow_persistent 157

msql.max_links........................ 157

msql.max_persistent 157

mssql 145

mssql.allow_persistent 157

mssql.compatability_mode 157

mssql.max_links 157

mssql.max_persistent 157

mssql.min_error_severity 157

mssql.min_message_severity..... 157

mssql.secure_connection........... 157

Multiple-Connection Benchmarking30

mysql 145

MySQL Libraries 154

mysqli 145

N

navigation 26

Net Mask................................... 50

Non-2xx Responses 30

O

oci8.. 145

odbc....................................... 145

OIC Libraries 154

Online Help 125

Online Resources........................ 32

open_basedir........................... 130

openssl 145, 154

Optimizer, Zend 43

OS Version27, 29

Output Buffer............................. 43

output_buffering 130

output_handler 130

P

Packages........................ 6, 33, 125

Password19, 33

Paths and Directories 130

pcntl....................................... 145

pcre 145

Index

171

pdo...145

pdo_ibm145

pdo_informix............................145

pdo_mysql145

pdo_pgsql................................145

performance.........................27, 30

Permissions............................... 19

pfpro.defaulthost157

pfpro.defaultport.......................157

pfpro.defaulttimeout..................157

pgsql.allow_persistent157

pgsql.auto_reset_persistent........157

pgsql.ignore_notice157

pgsql.log_notice........................157

pgsql.max_links........................157

pgsql.max_persistent157

PHP............................... 27, 29, 35

PHP classes 24

PHP community 32

PHP Config File 27

PHP Configuration23, 35, 130

PHP Extensions.........................145

PHP Information 53

PHP License............................... 29

PHP Manual.................... 29, 53, 55

PHP Options 29

PHP Training Courses.................126

php.ini.................................27, 29

phpinfo................................27, 29

phpize 37

Platform, Zend126

port number.........................30, 43

Port, Server 27

posix.......................................145

post_max_size130

PostgresSQL Libraries154

PostgressSQL157

precision..................................130

Product Feedback 32

product version.......................... 19

Products35, 43

Profile..................................27, 50

Q

Quarterly Updates 125

R

Rapid Development & Deployment

... 126

realpath_cache_size 130

realpath_cache_tll 130

Reduced Testing Cycles 126

reference information....... 19, 23, 53

reflection 145

Refresh.......................... 19, 27, 33

register_argc_argv 130

register_globals 130

register_long_arrays................. 130

Registration.................................6

Remote connection 43

report_memleaks 130

report_zend_debug 130

requests 30

Requests Per Second 30

require class 24

Resource Limits........................ 130

Restart Web Server 19, 27, 29

Rollbacks7

Run.. 30

S

Safe Mode............................... 130

safe_mode 130

safe_mode_exec_dir 130

safe_mode_gid 130

safe_mode_include_dirs 130

Save Settings 19

Search.................................53, 55

Secure Environments 33

Zend Core for i5/OS User Guide

172

Security.................................... 19

sendmail_from130

sendmail_path..........................130

serialize_precision.....................130

Server API 27

Server Configuration 27

Server Information..................... 29

Server Monitoring and Control 23

Server Name............................. 27

Server Port 27

Server Restart 19, 27, 29

Server Software......................... 27

Server Status 27

server-monitoring 27

Service Level Agreements125

session....................................145

setup script 19

Setup Tool 33

shmop.....................................145

short_open_tag130

simplexml145

SMTP130

smtp_port................................130

soap145

sockets....................................145

spl ..145

SQL ..157

sql.safe_mode157

sqlite.......................................145

Stack Trace View 43

standard..................................145

Starting 19

Status 33

Status / Zend Products 43

Studio Server 35, 43, 50

Studio, Zend126

Sum

Bytes..................................... 30

Sum ... 30

Support 23, 27, 30, 32, 125

Support Programs7

Support Services 125

Support Tool Information........... 129

Sybase 157

sybase.allow_persistent 157

sybase.compatability_mode 157

sybase.max_links 157

sybase.max_persistent.............. 157

sybase.min_error_severity......... 157

sybase.min_message_severity ... 157

Sybase-CT............................... 157

sybct.allow_persistent............... 157

sybct.max_links 157

sybct.max_persistent................ 157

sybct.min_client_severity 157

sybct.min_server_severity 157

Syslog 157

System

Testing................................... 30

System 30

System Features 19

System Overview 27

system-profiling 27

sysvmsg 145

sysvsem 145

sysvshm 145

T

t1 .. 154

Table of Contents 53

Tabs... 26

Test results 30

Testing

System 30

Time Taken............................. 30

Testing 27

Testing 30

Index

173

Third Party

Extenstions 37

Products 37

Ticket......................................125

tidy...145

Time Taken

Tests 30

Time Taken 30

Timeouts 30

tokenizer145

Total Transferred 30

track_errors130

Training Courses.......................126

Training, Zend..........................126

Transfer

Bytes..................................... 30

HTML..................................... 30

Transfer.................................... 30

Transfer Rate 30

Tunneling 50

U

unattended installation 6

Unattended Rollback..................... 7

unattended Update....................... 7

uninstall libraries154

UNIX.......................................126

Unload Extension 19

unserialize_callback_func130

Updater Tool 33

Updates........................... 7, 27, 33

Updates online........................... 33

Updating................................7, 24

Updating Offline........................... 7

Updating Online 7

upgrading installations.................. 6

upload_max_filesize130

upload_tmp_dir130

URL ... 30

Use Keep Alive........................... 30

user interface 26

user_dir 130

V

Variables................................... 43

variables_order 130

Verisign Payflow Pro 157

Version

OS... 27

PHP 27

Zend Core 27

Zend Engine 27

Version 27

Viewing Updates 33

W

wddx 145

Web

analyzing................................ 30

Web ... 30

Web Page Testing....................... 30

Web Server27, 30

Web Server Processes................. 27

Web Server Threads 27

Windows 126

X

xml .. 145

xmlreader 145

xmlrpc 145

XML-RPC................................. 157

xmlrpc_error_number 157

xmlrpc_errors 157

xmlwriter 145

xsl ... 145

Y

y2k_compliance 130

Z

Zend Core 33

Zend Core Extensions 145

Zend Core for i5/OS User Guide

174

Zend Core GUI Password............. 19

Zend Core Updates....................... 7

Zend Core Version 27

Zend Debugger.....................43, 50

Zend Developer Zone 32

Zend Engine Version................... 27

Zend Extension Manager 43

Zend Framework...................23, 24

Zend Framework library 24

Zend Guard........................ 43, 126

Zend Loader.............................. 24

Zend modules 43

Zend Network Updates

Secure Environments............... 33

Zend Network Updates125

Zend Network User ID 33

Zend Optimizer.......................... 43

Zend Platform126

Zend Product Status................... 43

Zend Products35, 43

Zend SafeGuard......................... 43

Zend Studio............................. 126

Zend Studio Server................35, 50

Zend Support 7, 32

Zend Training 126

Zend Update Package7

Zend Updater 6, 7

zend.ze1_compatibility_mode 130

zend_core_allow_restart 43

zend_core_default_gui_language.. 43

zend_debugger.connector_port 43

zend_debugger.tunnel_max_port . 43

zend_debugger.tunnel_min_port .. 43

zend_optimizer.disable_licensing .. 43

zend_optimizer.enable_loader...... 43

zend_optimizer.licence_path 43

zend_optimizer.optimization_level 43

zend_optimizer.zl 43

ZendUpdater -r7

zip ... 145

zlib.................................. 145, 154

	General Information
	Logging In
	 Control Center
	System Overview
	 PHPinfo
	Benchmark
	Support
	 Updates

	 Configuration
	PHP
	 Extensions
	 Zend Products
	 Misc. Directives
	Zend Debugger

	 Documentation
	PHP
	PEAR
	 Search

	i5 PHP API Toolkit
	i5 Toolkit Classes (sample)
	Zend Studio IDE templates

	i5 PHP Connector API
	CL Calls
	Program Calls
	Data Retrieval
	Native File Access
	SQL File Access
	Transactions
	Data Queues
	System Values
	User Spaces
	Job Log List
	Active Job List
	Data Areas
	Spooled File
	Object Listing

	 PHP Data Description
	Command Constants
	Active Job (i5_job_list) array elements constants
	Job Log Constants (i5_jobLog_list) array elements constants
	Errors
	Data Retrieval Errors
	Function Errors

	 Easycom PHP Data Description
	Short Data Format
	 Long Data Format
	Data Types
	 I/O Values

	Program Samples
	i5 Program Call
	 Service Program
	 Data Retrieval
	
	 Native File Access sample
	Data Queues
	System Values
	 User Spaces
	Active Job List
	 Job Log List
	 Data Areas
	 Spooled Files
	 PCML Program Call – PCML Description Used in the PHP program
	PCML Program Call 2 – PCML File External to PHP Program
	 List of an RPG Program, "TESTSTRUC", Called by the PCML sample programs
	Web Services

	Appendix A - Support Tool Information
	Appendix B - PHP Configuration Information
	 Appendix C - Zend Core Extensions
	 Appendix D - Libraries
	 Appendix E - Misc. Directives Configuration Information
	Appendix F - I5 Toolkit Templates
	Index

